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We investigated the acoustic-energy density of electro-acoustically amplified transverse off-axis waves in single crystals of

semiconducting CdS in the frequency range 0.25-1.8 GHz with the help of a Brillouin-scattering technique. The electric
field was applied parallel to the c-axis in pulses of 40 us duration with a rise-time of about 5 us. The repetition rate was
4 Hz. The excited acoustic flux appeared to be stationary about 5 us after the onset of the bias pulse. All measurements
were carried out at room temperature. The conductivities of the various samples ranged from 0.66 Q"' m™ t0 23Q ' m™".
The spectral acoustic-energy distribution appeared to peak at a frequency considerably lower than that predicted by
White’s linear small-signal gain theory. With increasing voltage this peak was found to shift towards lower frequencies,
which could be as much as 4 times lower than predicted by White’s theory. This down-shift with increasing voltage was
discussed in terms of an adapted linear theory: we took into account acoustic-scattering losses at the crystal side-faces and a
decrease of the conductivity. The latter effect is thought to be caused by the trapping of free charge carriers in deep
potential troughs which are associated with the amplified acoustic waves. We found that the down-shift of the peak frequency

with increasing voltage can be described quite well by this adapted linear theory.
The off-axis angle of maximum acoustic-energy density as obtained from Brillouin-scattering experiments appeared to be
in good agreement with the off-axis angle as calculated from resonances in the ac impedance.

1. Introduction

Amplification of travelling acoustic waves as a
result of their interaction with supersonically
drifting charge carriers in piezoelectric semicon-
ductors has been a subject of continuous interest
for many years. Many authors [1-16] have used
the technique of Brillouin-scattering, i.e. inelastic
scattering of light by acoustic waves, for the
study of the electro-acoustically excited acoustic
flux, as this technique provides a unique tool for
the investigation of plane-wave components in a
complex acoustic-wave distribution. The electro-
acoustically excited flux in piezoelectric semi-
conductors has usually been found to be concen-
trated in macroscopic travelling domains starting
at the carrier-injecting contact and propagating
with the sound velocity in the direction of carrier
drift. The occurrence of such travelling acoustic
domains involves macroscopic electrical current
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oscillations with a period equal to the domain
transit-time, and a highly nonuniform dis-
tribution of the electric field. So far most Bril-
louin-scattering studies reported in the literature
have focussed on the growth of the acoustic flux
in these domains. The frequencies of maximum
acoustic amplification have been found to be
[2,5-7,14] an order of magnitude lower than
predicted by the linear theory of electro-acoustic
amplification, given by White [17] in 1962.
Several authors [1, 6, 10-12] have attributed the
failure of this linear theory to the occurrence of
essential nonlinearities in the interaction be-
tween strain waves and space-charge waves. The
observed down-shift of the frequency of maxi-
mum amplification is thus thought to be caused
by parametric down-conversion of the acoustic
waves. Yamada et al. [10-12] have observed both
down-conversion and up-conversion in the am-
plified acoustic flux in CdS, which indicates that
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nonlinear frequency mixing may indeed play an
important role. Others [5, 14], however, have
argued that the trapping of free charge carriers
in deep potential troughs that are associated with
the amplified acoustic waves is responsible for
the observed down-shift with increasing acoustic
flux intensities, i.e. with increasing electric field
strengths. They have proposed that the electro-
acoustic amplification can still be described by
the linear theory, if the reduction in the free
charge-carrier concentration is taken into ac-
count. Since according to White’s theory [17] the
frequency of maximum amplification was pre-
dicted to be proportional to the square root of
the free carrier concentration, the trapping of
free carriers should indeed result in a down-shift.

Brillouin-scattering data on the amplified
acoustic flux without the occurrence of travelling
acoustic domains have been reported by Zemon
et al. [2] in CdS. The amplified acoustic flux
again appeared to be located around frequencies
considerably lower than predicted by the linear
theory. However, Zemon et al. [2] could not
make a quantitative comparison with the linear
theory applicable to samples with uniform con-
ductivities only, because this condition was not
met in their samples.

The formation of travelling acoustic domains is
probably due to shock excitation, caused by the
application of short rise-time electrical bias pul-
ses (rise-times <1 us) [2,8,18]. Domain for-
mation can be suppressed by using bias pulses
with relatively long rise-times (>1 us); some
authors [19,20] have argued that the use of
relatively short samples (=<3 mm) may also be
helpful in avoiding domain formation. In the
absence of these travelling acoustic domains the
acoustic flux will be built up by the amplification
of acoustic waves originating from the thermal
background [2, 8, 19, 20].

We want to prevent the occurrence of these
travelling acoustic domains in our study, as it
involves the injection of a large, poorly defined
acoustic disturbance. Many et al. [8] have
observed that the down-shift of the peak

frequency of the acoustic flux within a domain is
much more pronounced than in cases where no
domains occur. They have proposed that the
parametric down-conversion of the acoustic
waves is strongly stimulated by the shock-excited
flux, the latter acting as the stimulating signal [3].
Therefore the effects of nonlinear frequency
mixing may be of importance mainly in acoustic
domains. If the acoustic flux is continuously dis-
tributed over the sample, i.e. in the absence of
domains, the down-shift may possibly be des-
cribed by the linear theory, in the sense indicated
above.

The aim of this paper is to present an exten-
ded set of experimental data on the continuously
distributed amplified acoustic flux in CdS. We
shall discuss experimental data in terms of the
linear theory, taking the reduction of the free
carrier concentration into account. In section 2
we shall review the results of this theory and
summarize the Brillouin-scattering formulas
from the literature. In section 3 the scattering
configuration and experimental arrangement will
be described. Experimental Brillouin-scattering
data will be presented in section 4. In section 5
conclusions will be summarized.

2. Theory

In section 2.1 we summarize some theoretical
results concerning the description of electro-
acoustic effects. In section 2.2 a brief review of
Brillouin scattering is given.

2.1. Electro-acoustic attenuation

Although the electro-acoustic effect refers to
the amplification of acoustic waves, White [17]
would have preferred the term attenuation,
because the process of amplification (negative
attenuation) can be regarded as anomalous
behaviour. In some cases, however, the term
attenuation is quite confusing. In this paper we
shall use both the term amplification and the
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term (negative) attenuation, giving some pref-
erence to the latter.

In [21] we presented a theoretical model for
the description of electro-acoustic current
saturation, current noise and ac-impedance effects
in an n-type piezoelectric semiconductor where
the electric field is parallel to the c-axis. These
electro-acoustic effects arise essentially from
nonlinearities in the interaction between free
charge carriers and amplified acoustic waves. To
avoid the need for nonlinear equations we have
assumed that the observed electro-acoustic
effects can be described by the random trapping
and de-trapping of free charge carriers in poten-
tial troughs. These potential troughs are asso-
ciated with the amplified acoustic waves. In fact,
the cause of potential troughs (i.e. the amplified
acoustic flux) has been disregarded in the
theoretical description; only the effect of the flux
(i.e. potential troughs) has been taken into ac-
count. We could do this only if we made certain
assumptions about the properties of these
troughs. It should be noted that the current noise
and ac-impedance effects usually occur at
frequencies far below the frequencies of the
amplified acoustic waves [20,22,23]. Although
this model is a much simplified representation of
the complex electro-acoustic effects, its theoreti-
cal predictions appeared to be consistent with
the experimental current-noise and ac-im-
pedance data [22, 23]. This trough model has also
been used to derive expressions for the wave
attenuation coefficients [21]. Experimental data
on the frequency distribution of the acoustic
energy, which are presented here, are connected
in some way with the wave attenuation
coeflicients.

The expressions for the wave attenuation
coeflicients obtained with the potential-trough
model contain various parameters; these include
parameters related to the electric field depen-
dence of the potential-trough creation and anni-
hilation  rates, potential-trough lifetimes,
parameters related to electro-acoustic dispersion,
etc. [21]. As we pointed out before [22, 23], these

parameters, which are obtained from current-
noise and ac-impedance data, cannot be deter-
mined very accurately. Due to these inaccuracies
the frequency and voltage dependence of the
associated wave attenuation coefficients cannot
be determined unambiguously. Besides, it is
doubtful whether the potential-trough model still
holds at frequencies close to the frequencies of
the amplified acoustic waves. For these reasons
we prefer to discuss our Brillouin-scattering
results not in terms of the previously published
potential-trough model, but rather in terms of
White’s linear small-signal gain theory, taking a
reduction of the free carrier concentration into
account.

According to the potential-trough model [21]
electrons become trapped in potential troughs
and thereby can no longer participate in the
sound-amplification process. The remaining
average free electron conductivity, denoted by
o1, can be calculated at each applied electric field
strength from the measured plateau-value Z, of
the ac impedance [23] by using

L

T 1

gy

where L is the contact spacing, and A is the
cross-sectional area. Instead of using the Ohmic
conductivity, as did White [7] to calculate the
electro-acoustic attenuation coefficients, we con-
sider it more appropriate to use the reduced
conductivity o;. It should be noted that generally
Z, is found to differ from the differential resis-
tance as obtained from the current-voltage
characteristic [23].

Once the reduction of the free carrier concen-
tration resulting from nonlinear effects has been
taken into account, it is assumed that the am-
plification of acoustic waves under current-
saturation conditions can be described by the
linear theory.

According to the modified linear theory the
electro-acoustic attentuation coefficient «. for an
acoustic wave of frequency « having an off-axis
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angle & (the angle between the acoustic wave-
vector and the c-axis) is given by [17, 24, 25]

K3(8) Yo!

(v, 8)= 204(8) Y+ (wiw + wlwp)*’

@)

where K. is the electro-mechanical coupling fac-
tor, v, is the unstiffened acoustic phase velocity,
w¢=o/e is the modified angular dielectric-
relaxation frequency, ¢ is the permittivity of the
material, vy=1-104cosd/vy, is the drift
parameter, 3, is the electron drift-velocity, v, is
the stiffened acoustic phase velocity (slightly
different from v,,), wp= v?/D, is the angular
electron-diffusion frequency, and D, is the elec-
tron-diffusion constant.

Amplification occurs if a. is negative. This
happens when the drift parameter vy is negative,
i.e. when the component of the drift velocity vy
along the acoustic phase velocity v exceeds v.
From eq. (2) we find that maximum amplification
occurs at an angular frequency given by

® = oy, = (wpwl). (€))

The frequency of maximum sound amplification
is thus found to be directly proportional to the
square root of the free electron conductivity o.
Since the ac-impedance plateau-value Z, is usu-
ally found to increase monotonically with increas-
ing applied voltage [23], this modified linear
theory predicts a down-shift of w,, with increas-
ing voltage (cf. eq. (1)).

It should be noted that the expression for the
attenuation coefficients obtained from the
potential-trough model [21] reduces to eq. (2) in
the extreme limit 1/7; = 1/7,=0, where 7; and 7,
are mean lifetimes of fluctuations in the numbers
of troughs. Physically this means that no trapping
and de-trapping occur. However, it should be
noted that expression (2) cannot be derived from
the potential-trough model by putting only wr; >
1 and wr,> 1.

In practice the net amplification of acoustic

waves will be reduced somewhat due to the
occurrence of lattice attenuation. Lattice
attenuation has been studied extensively in CdS
[9, 11,26-31]. Several authors [9,30,31] have
found experimentally that electro-acoustically
amplified acoustic waves originating from the
thermal background undergo lattice attenuation
which is proportional to w? Thus, the lattice
attenuation coefficient oy can be written as

oy = A0w2 5 (4)

where A, is a material constant. These results
are in accordance with the theoretical predictions
of Akhiezer [32].

In addition a second loss process may be of
importance: in most practical cases off-axis
waves will suffer from acoustic losses due to
scattering at the crystal side-faces. This effect can
formally be taken into account by introducing an
attenuation coefficient as. Yamada et al. [11]
showed that ag can be written as

275’ w?

= —_— in2
as VAG) sin® §, o)

where s is a measure for the surface flatness.
Experimental observations have been found to
be in agreement with eq. (5) [11]. Since this
attenuation coefficient is proportional to
sin? 8/v2(8), and v,(8) is only weakly dependent
on 8, boundary-scattering losses become more
important with increasing off-axis angle &.

The net attenuation coefficient ay is given
by

an= a.t aL t as, (6)

and shows a frequency and angular dependence
which is different from that of a. (cf. eq. (1)).

As we pointed out before [21, 23], resonances
appearing in the ac impedance can be used to
estimate the off-axis angle of maximum sound
amplification. Resonances appear in the ac im-
pedance at frequencies given by
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@I+ 1) vy
f=f1= 2 -Za

1=0,1,2,3,. .. )

where v, is the component of the acoustic group
velocity along the c-axis. As a result of the
elastic anisotropy in CdS the direction and mag-
nitude of the group velocity may differ markedly
from the direction and magnitude of the phase
velocity. However, from the value of vy,
obtained with eq. (7), we can calculate the asso-
ciated off-axis angle of maximum sound am-
plification unambiguously, if the values of the
elastic constants are known. Thence, the off-axis
angle of maximum amplification can be obtained
in two independent ways: from Brillouin scatter-
ing as well as from ac-impedance measurements.

2.2. Brillouin scattering

If the inter-atomic distance in a medium is
small compared to the optical wavelength, the
theory of light scattering can be given in a clas-
sical continuum description. It can be shown that
the scattering of light in dielectric media is
caused by local fluctuations in the dielectric
properties, or rather by local fluctuations in the
refractive properties [33,34]. In a ther-
modynamical treatment these fluctuations are
thought to be caused by non-propagating tem-
perature fluctuations [33-35] and by propagating
strain fluctuations [36]. The non-propagating
fluctuations produce quasi-elastically scattered
radiation with a central frequency equal to that
of the incident radiation. The frequency width of
this quasi-elastic scattering is determined by the
mean lifetime of the scattering fluctuations. The
propagating fluctuations give rise to a Brillouin
doublet, located approximately symmetrically on
either side of the unshifted line and separated
from it by a frequency interval equal to the
frequency of the propagating strain wave. The
presence of this doublet was predicted by Bril-
louin [37] in 1922, and first observed by Gross
[38] in 1930. The linewidth of the Brillouin dou-
blet is determined by the mean lifetime of the

scattering strain waves. The intensity of the Bril-
louin-scattered light is directly related to the
energy density of the scattering strain wave.

The use of Brillouin scattering as an optical
probe for studying the -electro-acoustically
excited acoustic flux requires detailed knowledge
of the kinematics of the scattering process, and
the scattering efficiency.

In optically isotropic media the kinematics of
the scattering process is conditioned by the
normal Bragg condition. The scattering geometry
in optically anisotropic media such as CdS is
determined by the generalized Bragg relations,
first derived by Dixon [39]. These relations can
be derived from the conservation laws for energy
and pseudo-momentum. Let k,, be the wave
vector of the monochromatic, plane polarized
incident light inside the medium (angular
frequency wy,), k. the wave vector of the scat-
tered light (angular frequency w,) and k that of
the acoustic wave (angular frequency w). Then
the conservation laws for the anti-Stokes process
read (cf. fig. 1)

kin + k = ksc 5 (8)
Win to= W - (9)
Note that egs. (8) and (9) only hold for a single
scattering process. As the scattering is only weak

in our experiments, multiple scattering can be
neglected. In this paper we restrict ourselves to

Fig. 1. Schematic diagram showing the wave-vector con-
struction for an anti-Stokes process. The figure also serves to
define the angles 6, and 6.
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the formulas for the anti-Stokes process. Similar
relations apply to the Stokes process [36, 39, 49].

From egs. (8) and (9) we obtain the following
relations for the angles shown in fig. 1 (if w <

win):

sin 6}, = ~A0_ [f+—’§(n.2 — n2 ] (10)
m 2nlnvs fA(z) m SC 9

sin 6= 520 [ /- D% (n2 - n2)| (11)
sC 2nscvs f/\(z) mn SC. .

Here v is the phase velocity and f = w/27 the
frequency of the acoustic wave, A, the
wavelength of the incident light in free space,
and n;, and n, are the polarization-dependent
refractive indices for the incident and scattered
light, respectively. Note that 6), and 6. are
angles inside the medium.

Expressions (10) and (11) are known as the
generalized Bragg relations. In the isotropic case
(nin = ny) these relations reduce to the well-
known normal Bragg relation (corresponding to
first-order diffraction):

e Aof
sin 6}, = sin O ———zninvs. (12)

From eqs. (10) and (11) we find an upper
limit for the acoustic frequency, above which no
Brillouin scattering occurs. This upper limit is
given by

fmax = % (nin + nsc) > (13)
0

which holds for the case of collinear interaction
with 6;, = 0;. = m/2. For example, let n;, = n, and
ne = ny, where n, and ny are the refractive in-
dices for light polarized perpendicular to and
parallel to the c-axis respectively. Then, using
Ao =632.8nm, v;=2%x10>ms™!, n, =2.453 and
ny = 2.471 [4], fuax = 15 GHz for transverse waves
in CdS. Furthermore, in the anisotropic case a
lower limit for the acoustic frequency, below

which no interaction occurs, is given by

U,
min — = Min — Hgcf - 14
frn= I (14

This case corresponds to the collinear interaction
with 0{,=—0, and |0,]=|0{=m/22. In CdS
fmin =57 MHz for transverse waves. Note that in
the isotropic case there is no positive low-
frequency limit.

Once the angles 6;, and 6. have been chosen,
the frequency f of the acoustic waves that are to
be investigated by Brillouin scattering is uniquely
determined by the generalized Bragg relations.
Thus the adjustment of 6;, and 6 provides a
simple tool for the selection of the acoustic
wave-vector to be studied. To be useful in the
experiment the internal angles 6i, and 6 should
be translated into external angles. This trans-
lation for our particular geometrical conditions
will be carried out in section 3.

Recently Mishra and Bray [41] have
established that the power of Brillouin-scattered
light provides a linear measure for the acoustic-
energy density, even in the case of the very
intense acoustic flux which is generally attained
in electro-acoustically active crystals. Because
the acoustic-energy density of thermal waves is
known, the measurement of the power of the
light scattered by these thermal waves would
provide an absolute calibration of the measured
acoustic-energy density. However, the sensitivity
of the experimental set-up (cf. section 3) did not
allow the measurement of the light power scat-
tered by thermal acoustic waves. Yet, the power
scattered by electro-acoustically amplified waves
could still be compared with the power scattered
by thermal waves, because the latter is known
theoretically. This enabled us to give absolute
values for the measured acoustic-energy den-
sities.

The efficiency of Brillouin scattering by ther-
mal strain waves has been calculated by Benedek
and Fritsch [36] for the case of cubic crystals.
Hamaguchi [40] extended the calculation to the
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case of crystals with hexagonal symmetry. In
these calculations it was assumed that the
dielectric fluctuations are linearly related to
fluctuations in the strain. The coefficients in this
linear relationship are known as the photoelastic,
elasto-optical or Pockels-tensor elements pju
(the subscripts i, j, k and [ run from 1 to 3).

Let the power of the incident radiation be Py;
the power dP, of the radiation scattered by
thermal acoustic waves while it travels over the
path-length /, into an internal solid angle d{2’, is
then given by

dPy = Pyoyw, 1A' B, 15)

where oy, is the scattering efficiency per unit
length per (internal) unit solid angle; B is a
factor describing the influence of the attenuation
of the incident and scattered radiation by ab-
sorption and scattering inside the medium, and
by reflection at the crystal boundaries. This fac-
tor will be discussed in section 3.4. In the range
of acoustic frequencies much smaller than kg77/h,
where kg is Boltzmann’s constant, T is tem-
perature and h is Planck’s constant, the scatter-
ing efficiency oy, for a Stokes or an anti-Stokes
process is given by [40]:

7TkB

Own = 2/\4pv |§lz

(16)

Here p is the mass density of the medium and &
is a vector which determines explicitly the
polarization of the scattered light. When = is a
unit vector indicating the polarization of the
sound wave, p;, a unit vector indicating the
polarization of the incident radiation, &« = k/|k| is
a unit vector along the acoustic wave vector and
K. = k./|k,| is a unit vector along the wave vec-
tor of the scattered light, the vector £ is given
by

€= K X (KX 1), a7

where

|m
ON

3
2 jjpijklpin,-KsckTrl (l = la 2a 3) ’ (18)
k=1

where &, is the vacuum permittivity. Note that
generally & is not a unit vector.

Now, by measuring the power dP of the light
scattered by the geometrically selected acoustic
waves, we can calculate the spectral acoustic-
energy density w per unit solid angle of these
waves with the help of the equation

dP
w = dPth W » (19)

where wy is the acoustic energy per unit
frequency per unit volume per unit solid angle of
thermal waves; this is given by

wi = f2kgT/v?. (20)

By substituting egs. (15), (16) and (20) into eq.
(19) we find

_ (dP\ __ 2pAif?
w= (P ) w2/3|§|201 Q' 1)

3. Experimental arrangements

In section 3.1 we shall specify the charac-
teristics of the samples used in the experiments.
In section 3.2 the experimental set-up is des-
cribed. In section 3.3 we discuss the scattering
configuration. In section 3.4 some correction
formulas are given. In section 3.5 we present
some estimates of the acoustic wave-vector
resolution.

3.1. The samples

For our experiments we used semiconducting
single crystals of hexagonal n-type CdS obtained
from Eagle Picher Industries, Inc. To make Bril-
louin-scattering  experiments  possible  two
opposite side-faces were mechanically polished
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to a flatness of about § pm. In some cases the two
other side-faces or the two contact faces were
polished as well. Unpolished surfaces, being
several orders of magnitude less flat than pol-
ished ones, can be expected to cause consider-
able acoustic scattering losses, since the
wavelengths of the amplified acoustic waves,
having frequencies around 1GHz, are about
2 pm [24].

The samples were supplied with two In-
evaporated ohmic contacts in such a way that the
electric field was orientated along the c-axis (the
longitudinal configuration). The In-contacts
covered the end-surfaces completely. For details
we refer to [23].

In table I the dimensions, dark-conductivity at
room temperature and surface characteristics of
the samples have been listed. Data on current
saturation, ac impedance and current noise for
samples s;, s, and ss have been presented in
{22, 23].

3.2. Experimental set-up

In the Brillouin-scattering experiments we
selected acoustic wave vectors directed parallel
to the polished crystal side-faces (cf. fig. 2).
Then, the internal angles 6;, and 6. are related
to the external angles 6;, and 6. by Snell’s law as
follows:

sin 0, = n;, sin 65, 22)

Table I
Characteristics of the CdS samples

W. Westera [ Electro-acoustically amplified acoustic flux in CdS

air medium air
1;\.in
3
K
SC
o' !
in Sc
8. o
n
b

Fig. 2. Refraction of the incident and scattered light at the
medium/air interfaces. The selected acoustic wave-vector was
always parallel to the side-faces.

sin 6, = R sin O, . 23)
Note that for this geometry the operational
frequency-interval suitable for Brillouin-scatter-
ing experiments, which is related to the limiting
frequencies fni, and foax (cf. egs. (13) and (14)), is
reduced due to the occurrence of total internal
reflections. From fig. 2 we find that the path-
length [, as occurring in eq. (15), is equal to
b/cos 0i,, where b is the sample thickness.

To avoid excessive Joule heating of the sam-
ples the voltage was applied in pulses of 40 ps
with a repetition rate of 4 Hz. The duration of
these pulses was sufficient for the samples to
reach a stationary state. To suppress travelling
acoustic-domain formation we used rise-times of

Dark-conductivity

L A at room temp. Polished faces
Sample (mm) (mm?) @'m™ (mm?)
s3 1.63 1.78 X 0.48 0.95 1.78 x 1.63-faces
1.78 x 0.48-faces
S4 1.76 1.24x0.43 0.66 1.24 x 1.76-faces
S5 2.79 1.43x0.37 23 all faces
$7 1.96 1.99 x 0.58 14 1.99 x 1.96-faces

1.96 x 0.58-faces
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about 5 ps. Under these conditions only a con-
tinuous type of acoustic flux was amplified.

The height of the voltage pulses was measured
with a sample-and-hold circuit.

The experimental set-up for the Brillouin-
scattering experiments was similar to that in the
original paper of Zucker et al. [1] (cf. fig. 3). A
helium-neon (He-Ne) laser (output=<1mW;
Ag= 632.8nm) was used as a light source. The
laser beam was polarized by a Glan-Thomson
prism and focussed to a diameter of about
0.1 mm on the sample. The sample was placed on
a translatable and rotatable sample-mount. Light
scattered into an external solid angle d{2, defined
by the aperture angle of a circular diaphragm,
passed through a collimating lens and a second
Glan-Thomson polarizer before it was detected
by an EMI 9558 B photomultiplier. The labora-
tory angles 6, and 6, could be varied in-
dependently to select the acoustic wave-vector.
The apparatus needed for the investigation of
the scattered light (consisting of a photomul-
tiplier, analyzer, lens and diaphragm) was placed
on an optical rail connected to a turntable.

Since the radiation scattered by the electro-
acoustically excited flux is present only during
the application of the voltage pulse to the sam-
ple, it causes a synchronous modulation of the

polarizer +lens diaphragm

detector current. The quasi-elastically scattered
light, mainly resulting from static crystal defects
[34] produces a stationary detector -current.
Thus, the ac part of the detector current provides
a measure for the intensity of the light scattered
by the amplified acoustic waves. This part of the
detector current was measured with a synch-
ronized sample-and-hold circuit and recorded on
an xt-recorder.

3.3. Scattering configuration

In [23] we pointed out that transverse off-axis
waves are amplified in our samples. The
polarization vector of these waves lies in the
plane through the acoustic wave vector and
parallel to the c-axis (T,-mode); T;-waves
(polarization perpendicular to the c-axis)
produce no piezo-electric fields [24, 25].

To make Brillouin-scattering measurements
possible for off-axis angles of up to 30° or more,
we used the scattering configuration introduced
by San’ya et al. [13] (cf. fig. 4). The sample was
mounted on the scattering table in such a way
that it could be inclined with respect to the
scattering plane. In this way any desirable off-
axis angle could be selected.

The polarization of the incident light was

sample

laser M l\ I S
I I U [

diaphragm

e\ ~ -
sc/ +lens

analyzer

photomultiplier

Xt sample- high -

recor-|—1a@nd- | l5aes
hold ‘

der circuit filter

Fig. 3. The experimental set-up for the measurement of Brillouin-scattered light.
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scattering plane

Fig. 4. Brillouin-scattering configuration suitable for the study of off-axis waves.

chosen perpendicular to the c-axis. So we can
put

Min= 1, . (24)

The Brillouin-scattered light contained various
components of polarization, defined by the vec-
tor € in eq. (17). To minimize the disturbing
effect of the quasi-elastically scattered radiation,
which in general shows no change of polariza-
tion, we detected only the extraordinary com-
ponent of the Brillouin-scattered light by adjus-
ting the analyzer. It can be shown that the asso-
ciated extraordinary refractive index is given by
[13,42]:

Ny = nynyn3 + (nf— n?)sin? 6. cos* 8], (25)

From eqs. (10), (11), (22)—~(25) a unique rela-
tionship can be obtained between the acoustic
frequency f and the laboratory angles 6;, and 6.
Under these conditions we were able to select
acoustic waves with frequencies ranging from
about 0.25 GHz to 3 GHz, without the angle |6;,|
ever exceeding 25°. Still larger angles of in-
cidence would give rise to an unacceptable
reduction in the spatial resolution.
outside  the

3.4. Scattered power scattering

medium

The power of the incident light as well as that

of the Brillouin-scattered light may be reduced
by scattering and absorption inside the medium.
In addition, (multiple) reflections at the air/solid
interfaces reduce the power that is received by
the detector.

Let o, be the total scattering coefficient and
a;, the absorption coefficient of the incident
light, respectively; let the corresponding
coefficients for the Brillouin-scattered light be
denoted by o1, and a,.. We derived an expres-
sion for the correction factor B, introduced in eq.
(15), which accounts for the power reduction of
the incident and scattered light due to scattering,
absorption and multiple reflections. The factor B
is given by

B (o1, + as)b (o7, + an)b .
B= {exp[ cos 0.  cos @, ]— }
(o1, + @in)b

Cos 9:,-, ] (1 B Rm)(l a Rsc)

X exp[—

y [{(a'—,-sc + ag) 3 (o1, + ain)}b

cos 6. cos 0i,

—2(or, + @in)b )}

— R2
X {1 Ri, exp( cos 0L,

~2(o, + asc)b>}] -1

X {1 - R% exp( cos 0., (26)

where R;, and R, are reflection coefficients given
by Fresnel’s law [42]. In fact, if the angle be-
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tween the polarization vector p;, of the incident
light and the plane of refraction (or scattering) is
denoted by ¢;,, and the angle between the
polarization vector p, of the analysed, scattered
light and the refraction plane by ¢, then R;, and
R are given by

tgz(em Oin) sinz(Gin - G:n)

2 b + s 2 g
Rln tg2(0m+ Gin) Os d’m Sin2(9in+ O:n) sin ¢m .
27)
(0= 0) oy SIN(Bue = k) o
RS‘v‘ tgZ(osc + Osc) cos ¢SC * sinz(Osc + Bgc) St ¢sc :
28)

If we were to omit the effects of reflections at the
crystal boundaries by putting R, = R.=0, eq.
(26) would reduce to the result obtained by
Ando et al. [43]. In our samples the attenuation
of the laser light due to scattering and absorption
appeared to be of little importance.

For small cone angles the internal solid angle
d{f?' is related to the external solid angle df2 by
[40]:

cos 0.

da’' = -
ne(n% — sin® O

)1/2 da. (29)

If we realize that only the component of &
parallel to p, is detected, eq. (21) can be rewrit-
ten as (we used egs. (20) and (29)):

_dP 2pAfine(n? — sin? 6,.)" cos 6i,
=P Bl plbcosodn - O
The lowest value of w we could measure turned
out to be about 5x 10° wy,. This detection limit
was set by the noise in the detector current
which was due to the intensity of the quasi-
elastically scattered light still passing through the
crossed polarization filters. However, the energy
density of the electro-acoustically amplified
acoustic waves was usually much higher than this
detection limit.

3.5. Acoustic wave-vector resolution

In our experiments the acoustic wave-vector
resolution was limited due to the finite extent of
the solid angle d2 of detection. If a wave vector
with a frequency f and off-axis angle & is selected
in the way discussed before, acoustic waves with
frequencies in the interval (f+Af) and off-axis
angles in the interval (8 = A8) scatter light into
the solid angle df2 as well. From geometrical
considerations we found the frequency resolution
Af to be given by

(arp=~2292. 31)

The angular resolution A8 of acoustic waves is
given by

v? dN

2 aizs
Ad PAl2m

(32)

It should be noted that Af and A8 are not
half-power band-widths, but indicate the maxi-
mum deviations from the selected frequency f
and off-axis angle 8, respectively.

In our case df2 was always smaller than 1.8 X
1073 sr. Inserting this value in eq. (31) we obtain
Af =~8x 10" Hz. The angular resolution A8 is a
function of the acoustic frequency. For f=
10°Hz we find from eq. (32) that 46 =3° at
f=3%x10*Hz we even find 46 = 9°.

4. Experimental results and discussion

When investigating the propagation charac-
teristics of an acoustic disturbance that is formed
by a collection of plane acoustic waves with wave
vectors centred in a narrow cone around a cer-
tain central wave vector, one should realize that
the direction of the acoustic-energy flow is
determined by the acoustic group velocity. As a
result of the elastic anisotropy in CdS the mag-
nitudes and directions of the group velocity and
the phase velocity may be quite different [15].
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This elastic dispersion effect is illustrated in fig.
5: an acoustic disturbance originating from 0 will
propagate along the direction of the group velo-
city v,, if the associated phase velocities are
centred around v,. For instance, for § = 30° the
angle between the group velocity and the c-axis
appears to be 45° in CdS [15].

In preliminary measurements we were able to
verify the predicted frequency-shift of the Bril-
louin-scattered light using a Spectra Physics 470
spectrum analyzer (a Fabry-Perot inter-
ferometer).

The possible laser-induced generation of free
charge carriers from local centres was in-
vestigated by varying the laser-light intensity.
Photo-excitation would locally change the elec-
tro-acoustic properties of the crystal. The in-
tensities of the incident light in our experiments
were always such that the power of the Brillouin-
scattered light was proportional to the power of
the incident light. From this result we concluded
that effects of local photo-excitation could be
neglected in our case.

Fig. 6 shows acoustic spectra for sample s;, at
various collinear positions. The selected off-axis
angle was 30°; the positions were chosen along
the direction of the acoustic energy flow (i.e. at
45°). The position coordinate r=0.8 mm was
found to be quite close to the anode. (Note that
the origin r=0 was chosen arbitrarily.) The
position of the anode could not be determined
very accurately due to the finite cross section of
the laser beam and to the oblique angles of
incidence and scattering. All spectra in fig. 6

c-axis

0

Fig. 5. Elastic dispersion in CdS. v, is the phase velocity, v, is
the group velocity. Wavefronts are indicated by parallel lines
perpendicular to v;.
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Fig. 6. Acoustic spectra for sample s; at various collinear
positions. The off-axis angle was 30°. The position vector r
was directed along the acoustic group velocity (at 45°). The
origin, r = 0, was chosen arbitrarily. The position r = 0.8 mm
is near the anode.

were obtained at the same reduced voltage (V —
V.)/V.=0.69, where V is the applied voltage
and V. is the voltage defined by the onset of
electro-acoustic current fluctuations [22]. The
external solid angle of detection was fixed at
5% 10~*sr. The intensity of the Brillouin-scat-
tered light reached a constant level about 5 ps
after the onset of the bias pulse. The current and
current noise appeared to remain constant after
Sws as well. These observations indicate that
after 5 ws the sample reached a stationary state.

From fig. 6 we observe that the spectral
acoustic-energy density increases monotonically
the closer one measures to the anode, whereas
the shape of the spectra remains almost un-
changed. In addition, each spectrum shows a
maximum at about 0.6 GHz. It is expected that
this frequency will somehow be related to the
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frequency of maximum acoustic amplification.
To find the latter frequency we should take into
account that the number of acoustic modes in the
frequency interval between f and f+ df is pro-
portional to f°. The frequency of maximum
acoustic amplification will coincide with the
frequency where a maximum occurs in the
quantity w(f)/f?>, which is proportional to the
acoustic energy of a single acoustic mode. From
the data in fig. 6 we derive that the maximum of
w(f)/f* lies at 0.5 GHz. White’s theory [17] pre-
dicts a maximum at 1.8 GHz, a value too large
compared with the measured 0.5 GHz. Better
agreement with the theory is obtained if we use
eq. (1) combined with eq. (3). Then we find a
maximum at 0.95 GHz (using Z, = 4.3k}). Lat-
tice attenuation (cf. eq. (4)) is of little im-
portance. Taking lattice attenuation (Ay=3X
1077 dBs’ m 'rad™? [29-31]) into account the
maximum in the amplification coefficient is still
found to be located at 0.95 GHz. The theoretical
frequency of maximum net amplification (cf. eq.
(6)) can be fitted to the experimental value of
0.5 GHz by inserting a value s = 0.9 pm for the
surface-flatness parameter s (cf. eq. (5)). This
value is quite acceptable: in the polishing pro-
cedure we used diamond powder with a fineness
of about j pm. The value of ay at 0.5 GHz was
found to be —~8.4x 10°dB m™".

Fig. 7 shows the data of fig. 6 and some
supplementary data at 0.5 GHz plotted versus
position r. We observe that the local acoustic-
energy density varies approximately exponen-
tially with position r. At positions close to the
anode (r = 0.7-0.8 mm) the acoustic-energy den-
sity seems to saturate somewhat. At these posi-
tions the incident and scattered light may perhaps
have been partially blocked by the anode, resul-
ting in a reduction of the detector current.

We might interpret the exponential position-
dependence of the acoustic-energy density as
some kind of electro-acoustic attenuation
coefficient. From the slope in fig. 7 we obtained
an operationally defined negative attenuation
coefficient of —6.9x 10*dB m™, a value close to

T T
3t °
L
n
27
&
2 # S7
o’ 3 -
! (V-V)IV = 0.69
r 5-30°
f=0.5GHz
5| —» position r(mm)

1 P P L

0.0 0.5 1.0
Fig. 7. The spectral acoustic-energy density for & =30° at
0.5 GHz versus position. The position vector was in the
direction of the associated acoustic group velocity (at 45°).
The origin was chosen arbitrarily.

the net attenuation coefficient «ay calculated
before. With the help of these experimental
results we were able to estimate by extrapolation
the spectral acoustic-energy density at positions
near the cathode. Near the cathode we found
w/wy, =3 X 10° (for comparison, near the anode
w/wg =4x 10°). This result indicates that net
round-trip gain occurred in the sample during
the build-up of the acoustic flux. Net round-trip
gain has been observed before in CdS by Hutson
et al. [44] and McFee [45]. Finally a stationary
state will be reached when the net round-trip
gain is reduced to unity due to some nonlinear
loss mechanism.

Fig. 8 shows w/wy, plotted versus frequency for
sample s; at different applied voltages. The
values of the reduced voltage (V — V.)/ V. have
been indicated. Note that the dimensionless
quantity w/wy, is proportional to w/f? (cf. eq.
(20)). We observe that the acoustic-energy den-
sity increases with increasing voltage. Maxima in
the spectra occur at frequencies much lower than
predicted by White’s theory (according to
White’s theory f,, = 1.3 GHz). In addition, these
maxima are found to shift towards lower
frequencies with increasing voltage. Notice that
the broadening of the spectra with increasing
voltage is apparent rather than real due to the
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Fig. 8. The relative spectral acoustic-energy density w/wy
versus frequency at different applied voltages for sample ss.
The values of the reduced voltage (V— V.)/V, have been
indicated; V. is the voltage marking the onset of electro-
acoustic current fluctuations. The off-axis angle was 20°.

logarithmic frequency scale. The curve at (V—
V) V.= 0.44 shows a small additional maximum
around 1GHz. With increasing voltage this
maximum turns into a small shoulder and finally
it is no longer observable. Possibly this ad-
ditional maximum may be interpreted as a peak
left over from the early growth-stage of the
acoustic flux: during the early growth-stage the
amplification can be assumed to peak around a
frequency close to that predicted by White’s
theory [5-12]; in our case f,, = 1.3 GHz.

In fig. 9 the frequencies corresponding to the
principal maxima in w/wy, (cf. fig. 8) have been
plotted versus the reduced voltage for sample s3
(black dots). The solid line was calculated from
maxima in the net amplification coefficient —ay

15 | |
# S3
f<— fm
6=20°
10 |- —
N
T
B!
>
1)
C
O05¢t+oT ]
[}]
&
— (V-Vc) Ve
1 1
0 1 2 3

Fig. 9. Frequencies of maximum w/wy, versus the reduced
voltage (dots) for sample s;. The off-axis angle was 20°. The
solid line corresponds to maxima in the net amplification
coefficient, if s =1.0um is used (s is a measure for the
surface-flatness of the crystal side-faces). The frequency of
maximum amplification according to the theory of White has
been indicated with an arrow on the vertical scale.

(cf. eq. (6)) by putting s = 1.0 pm, which again is
quite an acceptable value. Note that the adjusted
parameter s, because it takes account of boun-
dary-scattering losses only, should be indepen-
dent of the applied voltage. Therefore the vol-
tage dependence of the frequency of maximum
net amplification essentially arises from the vol-
tage dependence of the electro-acoustic am-
plification coefficient —a. (cf. eq. (2)). The vol-
tage dependence of the latter is determined by
the drift parameter (cf. eq. (2)), and the ac-
impedance plateau value (cf. eq. (1)). For (V—
V.)/V.=<0.6 the calculation of ay becomes very
inaccurate, because a. and (ap + as) are almost
of the same magnitude and have opposite signs
(cf. eq. (6)).

It should be noted that when the reduction of
the conductivity was neglected (replacing o; by
the Ohmic conductivity) no acceptable curve
could be fitted to the data of fig. 9 with the help
of eq. (6).

We conclude that the down-shift of the
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frequency of maximum amplification can be
described quite reasonably by the linear theory,
if a reduction in the conductivity, and the acous-
tic losses due to boundary scattering are taken
into account.

From measurements of the spectral acoustic-
energy distribution for sample s; as a function of
position we again found, as in the case of sample
s7, an exponential position-dependence. The thus
obtained operationally defined amplification
coefficients have been plotted in fig. 10 versus
the reduced voltage (black dots). The data were
taken at the frequencies where the ratio w/wy,
reaches a maximum (cf. fig. 8). The solid line
represents the calculated net amplification
coefficient, —ay, again using s=1.0pm. We
conclude that the calculated net amplification
coefficient ay is indicative only for the order of
magnitude of the operationally defined am-
plification coefficient which was determined from
the spatial distribution of the stationary acoustic
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Fig. 10. The operationally defined amplification coefficient
for sample s3;, obtained from measurements of the spatial
distribution of the acoustic energy at frequencies of maxi-
mum w/wy, as a function of the reduced voltage (V- VI Ve
(dots). The solid line represents the calculated net am-
plification coefficient —ay, at frequencies of maximum am-
plification (putting s = 1.0 pm).

flux. There is no quantitative agreement.
However, it is not clear whether we should
expect such agreement. The agreement between
these two amplification coefficients as found for
sample s; (cf. fig. 7) can be regarded as ac-
cidental.

Fig. 11 shows acoustic spectra for sample s, at
different applied voltages. The values of the
reduced voltage (V- V.)/V. have been in-
dicated. Again a pronounced down-shift is
observed with increasing voltage. At voltages
relatively close to the critical voltage V. a small,
additional maximum is observed, which becomes
a shoulder at higher voltages. This second max-
imum at (V- V.)/V.=023 is found to be
located close to the frequency of maximum am-

T T I T T 'ﬁ T
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Fig. 11. The relative spectral acoustic-energy density w/wy,
versus frequency at different applied voltages for sample s,.
The values of the reduced voltage (V- V.)/V. have been
indicated. The off-axis angle was 20°.
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Fig. 12. Experimental frequencies of maximum w/wy, versus
the reduced voltage (dots) for sample ss. The off-axis angle
was 20°. The solid line corresponds to maxima in the net
amplification coefficient, calculated if s = 0.9 pm is used. The
frequency f, of maximum amplification, according to the
theory of White has been indicated by an arrow on the
vertical scale.

plification that follows from White’s theory, if
the Ohmic conductivity is used (f,= 1.2 GHz).

In fig. 12 the frequencies corresponding to the
principal maxima in w/wy, (cf. fig. 11) have been
plotted versus the reduced voltage for sample s,.
The solid line was calculated from maxima in the
net amplification coefficient —ay (cf. eq. (6)) by
putting s = 0.9 pm.

Measurements of the angular distribution of
the acoustic-energy density for sample ss at (V —
V.)/ V.= 1.05 are shown in fig. 13. The solid lines
have been drawn to guide the eye. The im-
portant feature of these experimental data is that
the acoustic-energy density peaks at an off-axis
angle of about 20°. As we pointed out before
information about the angular distribution of the
acoustic-energy density can also be obtained
from resonance frequencies occurring in the ac
impedance. Fig. 14 shows the absolute value |Z]|
of the ac impedance as measured for sample ss at

—_—w /wth(a_u.)

—— off - axis angle
1 1

0 10° 20° 30°

Fig. 13. The angular distribution of the relative spectral
acoustic-energy density for sample ss at (V= Vo)/V.=1.05
for three different frequencies. The solid lines have been
drawn to guide the eye.

(V=V.)/V.=1.05. For details about the
measuring procedure the reader is referred to
[23]. Apparently, the maxima in the ac im-
pedance coincide with the odd harmonics of
(2.8+0.1)x 10°Hz. As we pointed out before
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Fig. 14. The absolute value of the ac impedance Z as a
function of frequency for sample ss at (V- V.)/V. = 1.05.
The value of the differential resistance Ry has been indicated
by a horizontal arrow on the vertical scale. The vertical
arrows correspond to odd harmonics of 2.8 x 10° Hz.
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[21,23], these maxima can be related to the
group velocity of the amplified acoustic waves
(cf. eq. (7). Using eq. (7) we obtained for the
component of the group velocity along the c-axis
vy, = (1.56£0.06)x 10> ms™'. From this result
and with the help of the known elastic constants
[46,47] we found the off-axis angle of the asso-
ciated acoustic waves to be & =22°*5°. We
conclude that this result is in good agreement
with the off-axis angle of maximum acoustic-
energy density as obtained from fig. 13. This
indicates that, as proposed before [23], the
determination of resonance frequencies in the ac
impedance is a useful tool for finding the off-axis
angle of maximum acoustic-energy density.

5. Conclusion

Brillouin-scattering studies of the stationary
electro-acoustically amplified acoustic flux
showed that the acoustic spectra peak at
frequencies which could be as much as 4 times
lower than those predicted by White’s linear
theory [17]. The frequencies of maximum acous-
tic-energy density were found to be independent
of position. With increasing voltage the acoustic
energy was found to increase; the frequencies of
maximum acoustic energy were found to shift
towards lower frequencies. If the effects of
acoustic scattering-losses at the crystal side-faces,
and a reduction of the conductivity are taken
into account, this down-shift could be described
by the linear theory. However, the calculated
amplification coefficients appeared to be in-
dicative only of the order of magnitude of the
operationally defined amplification coefficients
that were obtained from the spatial distribution
of the acoustic energy.

The off-axis angle of maximum acoustic-
energy density as obtained from Brillouin-scat-
tering experiments appeared to be in good
agreement with the off-axis angle as calculated
from resonance frequencies in the ac impedance.
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