
EAI Endorsed Transactions
on Serious Games __________________________ Research Article

 1

Toward reusable game technologies: assessing the

usability of the RAGE component-based architecture

framework

Wim van der Vegt1, Kiavash Bahreini1, Enkhbold Nyamsuren1, and Wim Westera1

1 Open University of the Netherlands, Valkenburgerweg 177, 6419 AT Heerlen, The Netherlands

{wim.vandervegt;kiavash.bahreini,enkhbold.nyamsuren, wim.westera}@ou.nl

Abstract.

This paper investigates the usability of the RAGE component-based software architecture (RCSA). This

architecture was designed to support serious game development by enabling cross-platform reuse of

game software components. While the architecture has been technically validated elsewhere, this paper

studies the perceived usefulness and ease of use of the architecture in practice. An extensive

questionnaire based on the Technology Acceptance Model (TAM) was administered to 23 software and

game developers that have been creating RCSA-compliant game components or integrating these in

actual serious games. The results show that developers are generally positive about the usability of the

architecture and that the architecture helps them to do a better job in less time. It turns out that developers

effectively use all communication modes that are offered by the architecture, most frequently those

based on the component´s APIs and the bridge pattern. Some issues were reported, but could be easily

addressed. Most developers reported that they have well understood the effectiveness of the architecture

and indicated to keep using the architecture in future projects. The outcomes of this study show that the

architecture opens up new opportunities to the cross-platform reuse of advanced game functionalities in

serious game projects, to reduce production efforts and to advance the domain of serious games at large.

Keywords: serious games, software components, game development, reuse, cross-platform, portability, game engines.

1Corresponding author. Email:wim.vandervegt@ou.nl

1. Introduction

Although the potential of games for teaching and training has

been widely recognised, their uptake in schools and business

has been quite limited [1, 2]. The serious game industry

displays many features of an emerging, immature branch of

business, being scattered over a large number of small

independent studios, displaying weak interconnectedness,

limited knowledge exchange, and absence of harmonising

standards [3]. Notably, progress is hampered by the wide

variety of programming languages, game development

systems and delivery platforms that are being used, all of

which go with specific technical constraints and

incompatibilities that pose severe barriers to growth.

Moreover, access to emerging media technologies that could

be easily incorporated in serious game projects, such as novel

adaptation algorithms, artificial intelligence kernels, or natural

language processing methods, is limited, while the alternative

of in-company development of such technologies is not

feasible, either because of required investments or because of

lacking know-how.

This paper presents the evaluation results of the RAGE

component-based software architecture (RCSA), which was

designed to accommodate the development and reuse of

advanced software components offering pedagogically

relevant functionalities for serious games [4,5]. The RCSA

was developed by the RAGE project (rageproject.eu), which

is a leading serious gaming research project funded by the

Horizon 2020 Programme of the European Commission.

RAGE focuses on the development of advanced software

Toward reusable game technologies: assessing the usability of the RAGE component-based architecture framework

 2

components that can be easily reused and integrated in serious

game projects across a wide variety of prevailing technology

platforms. To this end, the RCSA provides the technical

framework that overcomes many issues of incompatibility and

non-portability across different technical environments.

Software components based on RCSA would thus greatly

amplify the opportunities of serious game developers to

efficiently enhance their games with reusable software.

Although the RCSA was extensively tested and technically

validated with a series of proof cases [4, 5], its usability in

professional practice has not yet been studied. This paper

presents the evaluation study of the RCSA with respect to

technical usability, that was carried out among 18 component

developers and 5 game developers, respectively, all involved

in RAGE. In addition, detailed data is collected about the

usage of specific technical elements of the RCSA.

The research questions investigated are 1) to what extent

does the RCSA simplify creation and delivery of components,

2) to what extent does the RCSA simplify reuse of 3rd party

components, 3) are there any specific factors preventing

acceptance of the RCSA, and 4) to what extent are individual

functionalities of the RCSA being used. The first question has

the component developers as target group, while the second

question targets the component users (e.g. game developers).

The third question aims to investigate if game developers

experience any trust issues using RCSA based components or

other 3rd party code. The final question focuses on the usage

of RCSA features.

First, we will briefly introduce the RCSA. Then, we will

detail the research method and instruments used. Finally, we

will present and discuss the outcomes.

2. The RAGE component-based software
architecture (RCSA)

The RCSA was devised to accommodate the development of

software components that can be easily reused and integrated

in serious game projects across a wide variety of prevailing

technology platforms. An initial set of state-of-the-art RCSA-

based components can be accessed through the RAGE

marketplace portal at gamecomponents.eu. The components

offer a variety of functionalities ranging from learning

analytics, adaptation and personalisation, to language-based

sentiment analysis, emotion recognition, social gamification

and affective computing, i.e. functionality targeting serious

games. The RCSA [4, 5] distinguishes between server-side

components and client-side components. While remote

communications of server-side components with centralised

applications can be easily achieved with web services using

the HTTP-protocol (e.g., REST), which offers platform-

independence and interoperability among heterogeneous

technologies, client-side components need to be integrated

into client-machine applications (viz. game engines), which is

often problematic. Client-side components should be 1) highly

portable, 2) should allow easy integration without interfering

with game code, 3) consequently, should not directly access

the game´s user interface, and 4) should not access or make

assumptions about the underlying operating system. To this

end, the RCSA was designed by relying on a limited set of

well-established coding practices and software patterns (API,

Bridge, Publish/Subscribe and Web Services) aimed at the

abstraction of operations. Communications between

component code and game code is accommodated by five

different communication modes, the usage of which will be

investigated in this study [6]. First, games can use the

component’s API for direct access to the component’s core

functionality. Second, the bridge software pattern is platform-

dependent code implementing one or more interfaces that

allow a component to invoke game engine code without

having knowledge about the game’s implementation details or

making an assumption about the underlying operating system.

This also makes RCSA components very well suited for

performing unit testing. Third, broadcast messaging

(Publish/Subscribe) supports a 1-N type of communication,

for instance the game engine sending player performance data,

which then could be received by multiple components. Also,

a component could send broadcast messages to the game

engine and other components. Fourth, the Bridge can also be

used for web service calls to remote services. Fifth, partly

based on the previous modes, component-to-component

communication would be an additional mode.

Proofs of concept of the RCSA have been established for

C#, C++, Java and JavaScript/TypeScript, which are among

the predominant programming languages used game

development [6]. Also, RCSA-compliant components have

been successfully integrated in multiple game engines, such as

Unity3D [23], MonoGame [24], Cocos2D [25] and Xamarin

[26], and deployed at the most important desktop and mobile

platforms [5]. Although these proofs of concepts have

demonstrated the effectiveness of the RCSA, an important

question remains: how usable is the RCSA in practice, when

used by technology developers creating RCSA-compliant

components on the one hand, and game developers wanting to

reuse these components in their serious games projects on the

other hand.

Although the RCSA and its coding boundaries with regards

to game and operating system itself might be seen as a

composite game software pattern its main purpose differs from

the patterns described in [21] as those are targeting to improve

game coding structure or readability where the RCSA is more

a nonobtrusive delivery format for 3rd party code and therefor

has more in common with software packages like NuGet

packages [22]. Preliminary research showed RCSA

components can automatically be converted to multi-platform

NuGet packages. However unlike the NuGet packages which

basically delivers libraries with full access to the game and

underlying operating system, the RCSA’s boundaries prevent

this kind of direct access by design, therefor leaving important

decisions about for example where to store data to the game

developer.

The same coding boundaries also ensure that RCSA

components can be easily tested with agile unit testing

techniques, thus improving testability and quality.

Toward reusable game technologies: assessing the usability of the RAGE component-based architecture framework

 3

3. Method

The study was carried out with two extensive questionnaires

that were administered in January 2018 to 18 component

developers and five game developers (component users),

respectively, involved in the RAGE project. Both groups are

users of the RCSA, be it from different perspectives:

component developers need to accept the RCSA to build upon,

while game developers need to accept RCSA based

components and the integration methodology the RCSA

provides.

3.1. Target groups

The pool of potential participants familiar with the

architecture was necessarily restricted to individuals within

the RAGE project. The 18 component developers in the

RAGE project were employees at research institutes from

different European countries. The five game developers were

professionals from the four game studios that were part of the

RAGE consortium. In both groups, the age distribution is

bimodal, revealing two peaks, one typically under 25 years

and one around 40 years, respectively.

3.2. RCSA Components

The study relies on participants´ operational experiences,

either as a developer or as a user, with one or more of up to 30

initial software components developed by RAGE. The quality

and nature of the components’ pedagogical functionalities are

expressly excluded from current evaluation, as these are

reported in separate studies. Now, the focus is on the usability

of the architecture in the practices of software development

and game development. Usability issues might particularly

surface for client-side RCSA components, as they are

inherently bound to the abstraction layers, e.g. by using the

bridge pattern.

Instructions and support to component developers and

game developers were provided through manuals, workshops

and component code reviews. Component developers were

supported with downloadable Visual Studio project templates

for both C# and TypeScript (a superset of JavaScript including

static typing). Most of the (client-side) components are written

in C# and benefit from portable assemblies that are used across

Visual Studio, Xamarin as well as the Unity3D game

development platform. C# based project templates have been

made available, including a regular (.NET 3.5) project and a

portable assembly counterpart using the same source code.

Both projects preserve portability by using a common subset

of the two .NET framework versions in order to compile. Also,

code snippets for implementing various bridge interfaces were

made available.

3.3 Games

To assess the functioning of components in real games with

real end-users, the four game studios in RAGE created seven

component-based serious games of which the majority was

created using Unity3D. The games focus on various social and

entrepreneurial skills and address diverse target groups

including school and university students, sports volunteers,

policemen and corporate candidates. Overall, over 1500

participants in total were involved in the game pilots. Details

about the game pilots and their evaluations can be found in

[27, 28].

3.4 Questionnaires

We opted for questionnaires rather than interviews to avoid 1)

any influences of interviewers and 2) potential issues resulting

from (spoken) language barriers, given the various

nationalities involved. Because of the two different target

groups, two separate questionnaires were developed, both

with a similar setup and structure, but with slightly different

questions in some sections. The questionnaires were based on

the Technology Acceptance Model (TAM) [7, 8], which was

designed to collect information on perceived usefulness and

ease of use, both being indicators of technology acceptance

and usability. TAM was preferred to USE (Usefulness,

Satisfaction, and Ease of use) [9], TTF (Task-Technology Fit)

[10] and SUS (System Usability Scale) [11]. The USE and

SUS instruments were discarded as they are more focused on

the (graphical) user interfaces and associated end-user

experiences and are difficult to apply to software coding and

architectures. Task-Technology Fit was discarded, because of

the lack of a suitable profile and the efforts required to create

a new profile and validate it. The TAM-based questionnaire

uses six items for each scale; topics are briefly indicated in

Table 1.

Table 1. Topics covered by the TAM-based
questionnaire for RCSA usability.

 Perceived usefulness Ease of use

1 Faster task accomplishment Easy to learn

2 Enhanced job performance Easy to control

3 Improved productivity Clear and understandable

4 Enhanced effectiveness Flexible to use

5 Makes jobs easier Easy to become skilful

6 Usefulness in job Easy to use

For the TAM questions we used ‘RAGE architecture’ as

subject, expect for the first question on perceived usefulness

in the component developers questionnaire where we

expressly used ‘the RAGE architecture when creating reusable

components’ specifying the task more explicitly.

The 7 point Likert scales used the following abels

‘extremely unlikely’, quite unlikely, slightly unlikely, neutral,

slightly likely, quite likely and ‘extremely likely’, ,

respectively.

In addition to TAM, sections were included to establish 1)

programming experience self-estimation [12] in the most

Toward reusable game technologies: assessing the usability of the RAGE component-based architecture framework

 4

relevant programming languages, 2) the usage of the

architectural features, interfaces and communication modes,

including required efforts and restrictions encountered, and 3)

the architectural elements that were actually implemented or

used. For game developers, an additional section was added to

determine their attitude towards including third party software

in their projects and infrastructure. Although the evaluation is

primarily addressing the technical dimensions of the

architecture, acceptance could be hindered by trust issues

regarding the use of third party code and its origin. All score

items used a 7-points Likert scale. Basic demographic data

was limited to name, age, company, programming languages

and development environments used, and the components or

games developed. The questionnaires comprise 53

architecture-related questions, supplemented with 17 open-

ended questions allowing for comments. All invited

participants completed the questionnaire, possibly as a result

of the shared commitment of being part of the RAGE project,

be it not without the need for sending reminders.

For each of the two questionnaire versions, we have

checked the reliability of the two TAM scales. The perceived

usefulness scale shows excellent internal consistency

(Cronbach´s alpha: 0.96 and 0.97, respectively), the perceived

ease of use scale shows good internal consistency (Cronbach´s

alpha: 0.88 and 0.84, respectively) [14, 15].

3.5. Procedure

The questionnaires were administered using Google Forms.

The component developer version was pre-tested with one

component developer to check for completion time (30-45

minutes) and to test for the clarity of the questions. As the

game developer version was similar in length and design no

further tests were undertaken. RAGE work package leaders

were asked to distribute the questionnaire amongst the

software developers that had sufficient hands-on experience

or knowledge about the architecture. Reminders where send to

increase the response rate. An informed consent was

administered as part of the online questionnaire. All collected

data were anonymised and handled confidentially, in

accordance with RAGE policies to comply with research

ethics regulations. Quantitative data from the Likert scales

were all normalised to the 0-1 range before further statistical

processing.

4. Results

The overall number of participants, in particular the number

of game developers was small, because only a small number

of individuals within the RAGE project would have sufficient

practical experience with the architecture. The data from the

component developers is more informative and representative

than the data from the game developers, because of the small

sample size of the latter group (five respondents). Although

the small sample of game developers provided some

potentially useful preliminary insights, elaborate statistical

processing or direct comparison with the data from component

developers was not opportune.

4.1. Self-assessment of software skills

The results of the self-assessed programming skills for both

component developers and game developers display relatively

high overall scores, typically well above 0.6, except for

TypeScript. The skills deficiency in Typescript may be

ascribed to the fact that it is the most recently launched

programming language, extending JavaScript. Java expertise

is rated high among component developers (0.77). This may

be attributed to the development of high performance server-

based web-services by the component developers, an area

where Java is still a popular choice [13]. Overall, the RAGE

developers involved can be qualified as (highly) experienced.

4.2. Results from component developers

Responses

From 18 component developers, five only worked on server-

side components and skipped the TAM questions, which were

mainly referring to the client-side architectural elements. They

were then excluded from the TAM analysis but remained

included in the remaining functionality usage.

Software communication patterns used

While the RCSA accommodates a variety of software

communications modes, component developers are quite

selective (cf. figure 1). In the RCSA communication from the

game to the component is covered by….,. The reverse,

communication from a component to the game uses,

Webservices, which are used for addressing any remote

server, also make use of RCSA’s bridge interface.

Broadcasting is used to inform any listening service in the

system.

Fig. 1. Usage of software communication modes in
client-side components.

Toward reusable game technologies: assessing the usability of the RAGE component-based architecture framework

 5

Figure 1 shows that game to component communication

through component’s API is most abundantly used.

Communication in the reversed direction, that is, the

component using an interface from the Bridge in order to gain

access to the game or operating system functionality (such as

saving and loading data), is also frequently used. Using this

same mechanism to gain access to web-services was less used.

Mutual communications between components were not much

used as most components work independently from each

other. Publish/subscribe broadcasting was the least popular

communication mode. In sum, most RCSA communication

modes are being used in the components, most frequently the

ones using the components’ APIs and the bridge interfaces.

Reported issues and comments

A comment was made about the risks of using files with the

textual data format. This may cause UTF encoding issues

when loading XML files. The .NET framework works

internally with UTF-16 encoded strings [16], and as such it

defaults to UTF-16 encoded XML files. Forcing UTF-8 output

as used by some web-services requires some additional coding

[18]. Binary data is currently only supported in C# by base64

encoding it [17].

One component developer highly appreciated using the

bridge for platform dependent functionality but expressed

concerns about the obligation for game developers to

implement interfaces for the bridge, because they are reluctant

to implement code that is not strictly related to their games.

Their proposed solution was to include a ready to use bridge

class with the component. Although the concern is legitimate,

the proposed solution of adding a bridge actually undermines

platform independence. Pointing towards the available code

snippets providing reference was inspired by one of the

leading game platforms, Unity3D, not supporting modern

async/await type of method invocations during RCSA design.

Only recently Unity3D has started supporting a more up-to-

date .NET framework [19]. The RCSA easily supports this

new framework with its portable assembly counterpart.

Preliminary research also indicated that .Net Core 2.0 and

newer are easy to add using the same shared sources

mechanism as used for creating the portable assemblies.

Besides the current interface, which does not enforce async

calls, leaves the actual sync/async choice to the game

programmer.

During component creation, one-third of the component

developers reported having requested (and received) some

support for the architecture team. Most component developers

indicated that they would use the RCSA in future projects.

Architecture usability

Figure 2 and figure 3 show the normalised mean scores from

the component developers on six items of the perceived

usefulness scale and ease of use scale, respectively.

Fig. 2. Perceived usefulness according to component
developers (normalized scores).

Fig. 3. Ease of use according to component developers
(normalized scores).

Perceived usefulness has a mean score of 0.55 (standard

error 0.05), whereas ease of use received a mean score of 0.64

(standard error 0.05), both representing values well above

average. Actually, all separate items received scores above

0.50. Notably, component developers indicate that the RCSA

makes tasks easier, helps to accomplish tasks more quickly

and efficiently, and thereby improves job performance and

productivity (perceived usefulness). Also, the RCSA is easy

to understand, provides a flexible way to create components,

which can be easily applied.

4.3. Results from game developers

Responses

Toward reusable game technologies: assessing the usability of the RAGE component-based architecture framework

 6

Five game developers, representing each of the four game

studios participating in RAGE, responded to the

questionnaire.

Components and game projects

Game developers reported being involved in the development

of all seven RAGE games. Six out of seven games were coded

using C#. One game developer used C++ as the coding

language. Five games used the Unity3D development

environment, one game used Cocos-2D, and one of the studios

used its own platform. The average number of RAGE

components being incorporated in each game is seven, evenly

divided among server-side components and client-side

components.

Software communication patterns used

In this section, we report how the game developers relied on

the RCSA features. We pay little attention to component’s API

since it is in-dependent of the RCSA. Four game developers

used one or more interfaces implementing the bridge pattern

that allows a communication from the component to the game.

For example, the interface for storing and retrieving local data

was used by four developers, and three developers used the

logging facility.

A component-to-component communication was used by

one developer. There are two options for such communication.

One component can directly call the other one if the former

implements the latter’s API interface. For such cases, the

RCSA provides a component manager that offers automatic

registry and lookup of available components. Alternatively, if

the components are unaware of each other’s APIs then the

game developer can implement a mediating wrapper code that

makes use of the component manager.

Other RCSA features were used to various degrees. Three

game developers used RCSA’s web-service interface to send

a request to remote services. Functionality for handling run-

time and default settings to be compiled into the game was

used once, which indicates that most game developers prefer

to supply the settings by game code. The only communication

pattern that was not used so far by the game developers is

publish-subscribe for broadcasting messages.

Reported issues and comments.

Scarce issues were reported. An issue was raised about the

voice synthesis component, which requires direct access to the

underlying operating system. This should be solved by the

component developer implementing a simple, generic

interface for this. For example, in the facial emotion

recognition component, direct access to a webcam was

replaced by a simple yet more versatile API that requires the

game developer to submit frames from a camera or other

sources (e.g. stills or pre-recorded video) to the component,

thereby ensuring platform independence.

One game developer needed to port client-side C#

components to C++ programming language. This requires

some effort, but is doable as such, since the RCSA was proven

to be valid for C++ [4].

With respect to adoption barriers, some of the game

developers expressed their concerns about the academic origin

of the components pedagogical content, while on the other

hand being totally confident with using third-party code. We

hypothesize that components from academia that are often

open-source and do not provide a quality guarantee in the

license agreement are perceived to have lower quality than

their commercial counterparts. For this reason, architectures

such as the RCSA may be highly beneficial for a wider

adoption of academic components since a conformance to

such architecture guarantees a level of standardization and

quality control.

One game developer reported compilation and deployment

issues for their game in a highly secured corporate

environment, prohibiting for example outwards web-service

calls. Although this environmental behaviour is not caused by

the RCSA itself, it is a potential issue for those RCSA-based

components that expect a web-service to be accessible. Four

game developers expressed a preference for ‘traditional’ direct

integration of functionality, which seems to suggest some

aversion to the RCSA. Still, four of the game developers

reported that they would keep using RCSA-compliant

components outside RAGE as well, while the fifth developer

said to be using it conditional to the component offering core

functionality needed in the game.

Architecture usability

The game developers TAM scores for both scales are slightly

above average: 0.53 (standard error 0.12) for perceived

usefulness and 0.58 (standard error 0.08) for ease of use.

Given the standard errors, the RCSA is to be qualified as

moderately usable. However, the scores were negatively

biased by one of the game developers assigning systematically

much lower scores as compared to the other developers.

Removing this outlier (scoring 0.19 and 0.33 on the two

scales) would produce perceived usefulness of 0.62 (standard

error 0.10) and ease of use of 0.64 (standard error 0.06). This

means that most game developers are positive about the

RCSA’s usability.

5. Discussion and conclusion

The outcomes of this usability study can be summarised as

follows: developers of software components are generally

positive about the usability of the RCSA and indicate that the

RCSA helps them to do a better job in less time. All

communication patterns offered by the RCSA have been

effectively used in the components under consideration, most

frequently the communications patterns based on the

component´s APIs and the bridge pattern. Some issues were

reported, but most of them could be covered without affecting

the portability principles of the RCSA. Most component

developers reported that they have well understood the

effectiveness of the architecture and indicated to use the

RCSA in future projects.

Game developers, acting as the users of the software

components, are likewise positive about the RCSA. Although

the sample was small, unambiguous responses indicated that

most game developers qualify the RCSA-compliant

components as useful and easy to integrate. Also, game

Toward reusable game technologies: assessing the usability of the RAGE component-based architecture framework

 7

developers used most of the communication patterns provided

by the RCSA. Functionality for handling run-time and default

settings to be compiled into the game was scarcely used,

however. It seems that most game developers prefer to supply

the settings through the game code. The tendency to stay in

full control of their game application may pose a barrier to

adoption of the RCSA. In [20] it was established that game

studios are generally open and positive toward new

technologies, but they are critical as such. They look for added

value in terms of better games or commercial potential, but at

the same time, they are afraid of complex and cumbersome

implementation, which is understandable as their games

should run smoothly without bugs or crashes. This

exploitation requirement inevitably goes with some reluctance

toward innovation: game developers first want to see the

evidence before adopting something new. Some ambiguity

was also shown by game developers raising concerns about

software from academic origin, while at the same time they

claimed to be confident with using third-party code.

Nevertheless, most game developers in the sample

indicated that they would keep using the RCSA in future.

Although the respondents where RAGE project participants

and this might have led to a bias in the TAM scores, the

absence of high TAM scores and the presence of critical

comments indicates that the respondents completed the

questionnaire from a professional viewpoint and thus gives

confidence the TAM scores are not biased.

Overall, this qualitative study has confirmed the

practicability of the RCSA by tapping on the practical

experiences of targeted component developers and game

developers using the RCSA. The positive outcomes of this

study open up new opportunities to flexibly incorporate

advanced game functionalities in serious game projects,

reduce production efforts and advance the domain of serious

games at large. The outlook would be a flourishing market of

advanced and affordable serious games that would contribute

in purposeful ways to addressing societal problems in the

fields of, e.g., media literacy, education and training, cultural

heritage and social inclusion.

Future work will include monitoring acceptance by

component and game developers outside RAGE and a closer

investigation of the not RCSA architecture related questions

on acceptance by game developers of foreign code (and

especially code with an academic origin) but that might lower

acceptation of components created according to the RCSA.

Acknowledgements.
This work has been partially funded by the EC H2020 project RAGE

(Realising an Applied Gaming Eco-System);

http://www.rageproject.eu/; Grant agreement No 644187.

References

[1] Carl Abt: Serious games. Viking Press, New York (1970).

[2] T.M. Connolly, E.A. Boyle, E. MacArthur, T. Hainey and

J.M. Boyle: A systematic literature review of empirical

evidence on computer games and serious games. In:

Computers & Education 59 (2), 661–686. DOI:

10.1016/j.compedu.2012.03.004 (2013).

[3] Stewart, J., Bleumers, L., Van Looy, J., Mariën, I., All, A.,

Schurmans, D., Willaert, K., De Grove, F., Jacobs, A., and

Misuraca, G.: The Potential of Digital Games for

Empowerment and Social Inclusion of Groups at Risk of

Social and Economic Exclusion: Evidence and

Opportunity for Policy. Centeno, C. (Ed.), Joint Research

Centre, European Commission. (2013).

[4] G.W. van der Vegt, W. Westera, E. Nyamsuren, A.

Georgiev and I. Martinez Ortiz: RAGE architecture for

reusable serious gaming technology components. In:

International Journal of Computer Games Technology.

Article ID 5680526. DOI: 10.1155/2016/5680526. (2016).

[5] W. van der Vegt, E. Nyamsuren and W. Westera: RAGE

Reusable Game Software Components and Their

Integration into Serious Game Engines. In: Proceedings of

the 15th International Conference on Software Reuse

(ICSR 2016). Springer International Publishing, Basel,

165-180 (2016).

[6] RedMonk: The RedMonk programming languages

rankings: January 2015,

http://redmonk.com/sogrady/2015/01/14/language-

rankings-1-15/, last accessed 2018/05/15.

[7] Davis, F. D.: Perceived Usefulness, Perceived Ease of Use,

and User Acceptance of Information Technology. In: MIS

Quarterly 13(3): 319-340 (1989).

[8] Marangunić, N. and Granić A.: Technology acceptance

model: a literature review from 1986 to 2013. Universal

Access in the Information Society 14(1): 81-95 (2015).

[9] Lund, A. M.: Measuring Usability with the USE

Questionnaire. STC Usability SIG Newsletter (2001).

[10] Furneaux, B.: Task-Technology Fit Theory: A Survey and

Synopsis of the Literature. In: Information Systems

Theory: Explaining and Predicting Our Digital Society,

Vol. 1. Y. K. Dwivedi, M. R. Wade and S. L. Schneberger.

New York, NY, Springer New York: 87-106. (2012).

[11] Bangor, A., et al.: Determining what individual SUS scores

mean: adding an adjective rating scale. J. Usability Studies

4(3): 114-123 (2009).

[12] Siegmund, J., et al.: Measuring and modeling

programming experience. In: Empirical Software

Engineering 19(5): 1299-1334 (2014).

[13] W3Techs: Usage statistics and market share of Java for

websites, https://w3techs.com/technologies/details/pl-

java/all/all/, last accessed 2018/05/15.

[14] Cronbach, L. J.: Coefficient alpha and the internal structure

of tests. In: Psychometrika, 16, 297-334 (28,307 citations

in Google Scholar as of 4/1/2016). (1951).

[15] Tavakol, M. and Dennick R.: Making sense of Cronbach's

alpha. Int J Med Educ 2: 53-55. (2011).

[16] Microsoft: Character Encoding in .NET,

https://docs.microsoft.com/en-us/dotnet/standard/base-

types/character-encoding, (2017).

[17] Microsoft: Convert Methods,

https://msdn.microsoft.com/en-

us/library/system.convert_methods(v=vs.110).aspx, last

accessed 2018/05/15.

[18] Lacovara, R.: How To Create XML in C# with UTF-8

Encoding, (2011),

http://rlacovara.blogspot.nl/2011/02/how-to-create-xml-

in-c-with-utf-8.html, last accessed 2018/05/15.

[19] Unity: Unity Blog: Unity 2018.1,

https://blogs.unity3d.com/2018/05/02/2018-1-is-now-

available/, last accessed 2018/05/15.

http://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/
http://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/
https://msdn.microsoft.com/en-us/library/system.convert_methods(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.convert_methods(v=vs.110).aspx
http://rlacovara.blogspot.nl/2011/02/how-to-create-xml-in-c-with-utf-8.html
http://rlacovara.blogspot.nl/2011/02/how-to-create-xml-in-c-with-utf-8.html
https://blogs.unity3d.com/2018/05/02/2018-1-is-now-available/
https://blogs.unity3d.com/2018/05/02/2018-1-is-now-available/

Toward reusable game technologies: assessing the usability of the RAGE component-based architecture framework

 8

[20] Saveski, G., Westera, W., Yuan, L., Hollins, P., Fernández

Manjón, B., Moreno Ger, P. and Stefanov, K.: What

serious game studios want from ICT research: identifying

developers’ needs. In: Games and Learning Alliance

Conference 2015, Rome (2015).

[21] Nystrom, B.: Game Programming Patterns. Genever

Benning (2014).

[22] NuGet Gallery, https://www.nuget.org/, last accessed

2018/09/18.

[23] Unity3D, https://unity3d.com/, last accessed 2018/10/22.

[24] MonoGame, http://www.monogame.net/, last accessed

2018/10/22.

[25] Cocos2D, http://www.cocos2d.org/, last accessed

2018/10/22.

[26] Xamarin, https://visualstudio.microsoft.com/xamarin/, last

accessed 2018/10/22.

[27] Bazzanella, B., Casagranda, M., Molinari, A., Humphreys,

S., Sleightholme, G., Lepoivre, O., ... Kommeren, R.

(2018). D5.4 – Pilots quality report round 2. RAGE project.

https://research.ou.nl/en/publications/d54-pilots-quality-

report-round-2, last accessed June 24, 2019.

[28] Steiner, C., Gaisbachgrabner, K., Nussbaumer, A.,

Mertens, J., Hemmje, M., Nadolski, R. J., ... Santos, P. A.

(2018). D8.4 – Second RAGE Evaluation Report. RAGE

project.

https://research.ou.nl/en/publications/d84-second-rage-

evaluation-report, last accessed June 24, 2019.

https://unity3d.com/

