
Open Universiteit
www.ou.nl

Portability of Serious Game Software Components

Citation for published version (APA):

van der Vegt, W., Westera, W., Kurvers, H., & Nyamsuren, E. (2019). Portability of Serious Game Software
Components. In IEEE Conference on Games 2019: London, United Kingdom 20-23 August 2019 (pp. 221-228).
IEEE. https://doi.org/10.1109/CIG.2019.8848094

DOI:
10.1109/CIG.2019.8848094

Document status and date:
Published: 26/09/2019

Document Version:
Peer reviewed version

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 06 jan. 2020

https://doi.org/10.1109/CIG.2019.8848094
https://doi.org/10.1109/CIG.2019.8848094
https://research.ou.nl/en/publications/fa3e9918-0318-453c-8531-3bcca461cdef

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Portability of Serious Game Software Components

Wim van der Vegt
Open University of the Netherlands

Heerlen, The Netherlands
wim.vandervegt@ou.nl

Enkhbold Nyamsuren
Open University of the Netherlands

Heerlen, The Netherlands
e.nyamsuren@gmail.com

Wim Westera
Open University of the Netherlands

Heerlen, The Netherlands
ORCID: 0000-0003-2389-3107

Hub Kurvers
Open University of the Netherlands

Heerlen, The Netherlands
hub.kurvers@ou.nl

Abstract— In recent studies, a component-based software
engineering framework (RCSAA) has been proposed to
accommodate the reuse of game software components across
diverse game engines, platforms, and programming languages.
This study follows up on this by a more detailed investigation of
the portability of a RCSAA-compliant game software
component across three principal programming languages: C#,
JavaScript (TypeScript), and Java, respectively, and their
integration in game engines for these languages. One
operational RCSAA-compliant component in C# is taken as the
starting point for porting to the other languages. For each port,
a detailed analysis of language-specific features is carried out to
examine and preserve the equivalence of transcompiled code.
Also, implementation patterns of required RSCAA constructs
are analysed for each programming language and practical
workaround solutions are proposed. This study demonstrates
that the software patterns and design solutions used in the
RCSAA are easily portable across programming languages
based on very different programming paradigms. It thereby
establishes the practicability of the RSCAA architecture and the
associated integration of RCSAA-compliant game components
under real-world conditions.

Keywords— Serious game, applied game, reuse, component,
asset; gamification; portability; RAGE

I. INTRODUCTION
While the leisure game market is being dominated by a

handful of global players (e.g. Sony, Nintendo, Microsoft)
supporting their propriety game consoles and thus establishing
de facto industrial standards, the serious gaming market is
scattered over a large number of small independent players,
all using different programming languages, game engines and
platforms [1]. As a result of this the cross-platform use and
reuse of software is not possible. Despite the fact that lively
vendor-bound developer communities and marketplaces have
emerged, e.g. linked with Unity, CryEnginegame, Cocos2d,
or Unreal game engines, the exchange and reuse of software
is limited and bound to the respective platforms. The
portability of game software between different game
platforms dramatically fails. As a consequence, serious games
lack the generality and harmonisation that would be required
for their wider distribution and usage in a diversity of
operational conditions. This hampers the (partial) reuse of
existing game software in new games, and unnecessarily
increases production costs and time-to-market [2].

To establish and preserve the portability of game software
across the wide diversity of game engines, software systems
and programming languages, the RAGE client-side asset
architecture – RCSAA [3] has been proposed. The RCSAA is
a generic component-based software engineering framework
[4,5] that accommodates the reuse of software components
across different parent environments. Proofs of concept of this

component-based architecture have been provided that
demonstrate its compliance with the following basic
requirements: 1) minimal dependencies on external software
frameworks and 2) interoperability between components, 3)
portability of components across both development
environments and target platforms and 4) portability of
components across different programming languages. To this
end, dummy implementations (“Hello World”) were
established in C#, Typescript, Java and C++, respectively [3].
In a subsequent paper the technical integration of a selected
RCSAA-compliant software component in C# into a running
example game in the MonoGame engine was analysed and
reported, as well as integrations with the Unity game engine
and Xamarin [6]. Current paper follows up on these studies by
providing a more in depth and systematic investigation of
portability by focusing on selected RSCAA-compliant
software components rather than on dummy components.

In this study we start off from an existing RCSAA-
compliant software component that is available in C#, and
then investigate the implications of porting it from C# to
TypeScript/JavaScript and Java, respectively. TypeScript is
used as a superset of JavaScript that adds static typing, which
can be used by Integrated Development Environments and
compilers to check for coding errors. By examining and
comparing these three different code bases, we have covered
the predominant languages used in game development [7],
namely compiled languages (C# for desktop and mobile
games, Java for server-based systems) and interpreted
languages (HTML5/JavaScript for browser games),
respectively.

Below we will first provide a recap of the rationale and
principles behind the RCSAA and the set of communication
modes it supports. Next, for each of the language ports (from
C# to TypeScript/JavaScript and Java, respectively) we will
identify and analyse language-specific features that may affect
the equivalence of transcompiled code, and examine the
implementation of required RSCAA constructs. As a final
check, each ported software component will be integrated and
tested in a game engine based on the respective programming
language.

II. THE RAGE CLIENT-SIDE ARCHITECTURE (RCSAA)

A. Components
The purpose of the RCSAA architecture [3,6] is to enable

developers to easily include extra functionalities, viz. through
portable software components, in their game development
projects. The RCSAA defines a component model for creating
a reusable plug-and-play component. Its client-side focus
refers to the fact that the components need to be locally
integrated into the parent system, which is one of many game

engines. The RCSAA serves to minimise incompatibilities of
the components with these engine.

The component model conforms to common norms of
Component-Based Development [4,5]: 1) a component is an
independent and replaceable part of a system that fulfils a
distinct function; 2) a component provides information hiding
and acts as a black box; 3) a component communicates strictly
through a predefined set of interfaces that guard its
implementation details.

An RCSAA-compliant component may either be a source
code file or a compiled program file. Components are enriched
with machine-readable metadata, such as keyword classifiers,
descriptions, and information about versions, licenses,
component dependencies and programming language used. In
accordance with the general definition of an “asset” by the
W3C ADMS Working Group [8] the components may also
include additional artefacts that are not to be compiled and run
as software, but provide additional guidance and support such
as tutorials, manuals, licenses, configuration tools, authoring
tools and other resources. The full component with all
artefacts included can be packaged for distribution. Examples
of RCSAA-compliant components are available on the
gamecomponents.eu marketplace portal, which is financially
supported by the Horizon 2020 Programme of the European
Commission. This portal constitutes a platform-independent
technology transfer hub that allows suppliers and users of
game software components to connect. Currently, over 40
components have been developed and exposed on the portal,
which cover a wide range of functionalities particularly tuned
to the pedagogy of serious gaming, e.g. player data analytics,
real-time emotion recognition, real-time arousal detection,
rule-based adaptation, game difficulty balancing, procedural
animations, virtual characters, essay grading, sentiment
analysis, interactive storytelling, social gamification and
many other functions [9].

B. The RCSAA design solution
To remove incompatibilities as much as possible, the

RCSAA relies on a limited set of well-established software
patterns and coding practices aimed at decoupling abstraction
from its implementation. This decoupling facilitates
reusability of a component across different software systems
with minimal integration effort. The parent system is
supposedly a game engine, but all considerations are
applicable to other software systems as well.

Fig. 1. Class diagram reflecting the internal structure of an RCSAA-
compliant game component.

Figure 1 shows the UML class diagram of the RCSAA
Component. Here, the IAsset class, which is defined as an
interface, provides the abstract definition of the component
including the fields, properties and methods required for its
operations and communications. The BaseAsset class
implements the set of basic functionalities of the component
following the definitions provided by IAsset. IBridge provides
a standardised interface that allows the component to
communicate with external technologies such as the game
engine or a remote service. The ISettings interface ensures in
accordance with the abstract definition in the IAsset interface
that every component has the basic infrastructure for
managing a unique component ID, type, settings, version
information, etc., which is then realised by the BaseSettings
class.

The following design solutions are used in the architecture
(A detailed description of the RCSAA and its classes and
operations can be found in [3]):

• No interference with the user interface
To avoid platform-dependent code, the component
only provides processing functionality by returning
processed data to the game engine (e.g. calculating
user performance metrics based on logged
behaviours). The component operates under the hood
and thus preserves the creative freedom of game
designers and developers to control the graphics, the
user interface and the look and feel of their game.

• Coordinating agent (Asset Manager)
Since various components may be linked together to
express aggregates, a coordinating agent is needed:
the Asset Manager, which is implemented using a
Singleton software pattern [10]. It handles
registration of components and exposes methods to
query these registrations.

• Bridge pattern
For allowing a component to invoke game engine
code, the Bridge software pattern [10] is used, which
is platform-dependent code implementing one or
more interfaces. As such, the components are not
aware of the actual implementation details. These
implementations can be re-used by multiple RCSAA
components. Alternatively, the communications
could use the Publish/Subscribe pattern [10,11,12]
through the Event Manager, which is initialised by
the Asset Manager during its Singleton instantiation.

• Settings
The component offers basic capabilities of storing
configuration data (settings), be it delegated through
the Bridge to the game engine. Storage also includes
localisation data (string translation tables), version
information and dependency information
(dependency on other components’ versions).

• Programming language’s features
Components largely rely on the programming
language’s primitives, standard features and libraries
to maximise the compatibility across game engines
supporting that language. Therefore, components
should delegate the implementation of required
operating system features to the actual game engine
using the Bridge, for example, for the actual storage
of runtime data.

These design solutions are used to cover all important
communication modes, while maintaining component
uniformity and keeping the game developer in control of the
component integration and use. Furthermore, the design
solutions make RCSAA-compliant components very well
suited for unit testing [13,14] and working with stubs or mock
objects [15], as the component is uninformed about the details
of the parent environment. The available communication
modes have been described in more detail elsewhere [6] and
include: (a) component to component; (b) component to game
engine; (c) component to web-service; (d) game engine to
component and (e) message broadcasting.

III. REAL-WORLD IMPLEMENTATIONS OF THE RCSAA
Among many RSCAA-compliant components currently

available in the gamecomponents.eu portfolio, we will use the
TwoA (Adaptation + Assessment) component [16], which
uses a fuzzy-logic based algorithm for the real-time adaptation
of task difficulty to user skill. The TwoA component assumes
that there are multiple tasks of varying difficulty levels, which
ideally can be controlled parametrically. It expects a player
performance metric as input and also uses time on task as an
indicator. Based on the history of player performance it
updates the player’s expertise rating and returns the optimal
difficulty level for the next task to be assigned. Through
continued re-iteration of task difficulty and player’s expertise
level, it guides the player along the optimal learning curve. A
detailed description of the adaptation mechanism is given in
[16]. The C# implementation of the TwoA component has
been extensively described elsewhere [6]. The C# version will

be used as a reference for analysing and discussing the details
of language conversions to JavaScript/TypeScript and Java,
respectively. The TwoA component consists of 2572 lines of
C# code in 12 classes. In both conversions the actual C#
source code was used as the starting point and converted to
JavaScript/TypeScript and Java on a line by line base. This
method was chosen as a large part of the code, e.g. method
bodies, have identical syntax in all three languages and the
method highlights any remaining conversion issues.

A. Conversion from C# to TypeScript/JavaScript
1) General considerations about JavaScript
While the object-oriented nature of C# makes it relatively

straightforward to implement all features of the RCSAA
presented above, the JavaScript implementation is more
complex. JavaScript is a prototype-based programming
language, which is not ideal for reusability. It has several
drawbacks concerning programming convenience, code
maintenance, refactoring and more importantly quality
control. For example, there is no native support for common
object-oriented encapsulation structures such as classes and
namespaces [17], which not only hinders direct translation of
architectural elements but also reduces the readability of the
code. Furthermore, in JavaScript, there is no compile-time
type checking, which can result in severe errors during reuse
of the architecture by developers. This set of errors tends to
surface at run-time and not at compile time as is the case with
programming languages that support type checking.

TABLE I. COMPARISON OF CONSTRUCTS IN C#, TYPESCRIPT AND JAVASCRIPT.

Programming language
C# TypeScript JavaScript

// a namespace
namespace AssetPackage {

// an interface
 public interface IAsset {}

 // a class
 public class BaseAsset : IAsset {

 // a constructor
 public BaseAsset() {}

 // a method
 public Boolean LoadSettings
 (String filename) {
 return true;
 }

 // a property
 public IBridge Bridge {
 get; set;
 }
 }
}

// a namespace
module AssetPackage {

 // an interface
 export interface IAsset {}

 // a class
 export class BaseAsset implements IAsset
{

 // a constructor
 constructor() {}

 // a method
 public LoadSettings
 (filename: string): boolean {
 return true;
 }
 }
}

// a namespace
var AssetPackage;
(function (AssetPackage) {

 // a class
 var BaseAsset = (function () {

 // a constructor
 function BaseAsset() {}

 // a method
 BaseAsset.prototype.LoadSettings =
 function(filename) {
 return true;
 };
 return BaseAsset;
 }());
 AssetPackage.BaseAsset = BaseAsset;
})(AssetPackage||(AssetPackage = {}));

1) Using TypeScript as an intermediate
To avoid these problems, we first ported the component

code to TypeScript, which is a superset of JavaScript and can
be automatically transcompiled into JavaScript. TypeScript
supports common object-oriented patterns without

compromising inherent advantages of JavaScript such as
flexibility and cross-platform support. It enables
encapsulations based on classes, interfaces, and modules
(analogous to namespaces in C#). Other features supported by
TypeScript are type definition, type inference, and compile-
time type checking. Therefore, patterns in C# can be translated

almost one-to-one to patterns in TypeScript. Table I compares
language constructs in C#, TypeScript, JavaScript,
respectively.

The C#-based implementation of the RCSAA can be
easily migrated to TypeScript-based implementation. The
RCSAA deals only with code that implements logic and
avoids code for the user interface, thereby reducing errors. For
example, a recent study [18] suggests that 80% of the errors in
JavaScript programs are related to the Document Object
Model (DOM). The RCSAA implemented in TypeScript does
not allow components to have direct access to the parent
system (e.g., a web browser). Therefore, components cannot
interact directly with the DOM, eliminating the 80% portion
of DOM-related errors by design. In addition, one-third of the
remaining 20% of the errors is type related and can be
minimized by a stricter type checking offered by TypeScript
[19].

A confusing difference between C# and TypeScript is that
the type and variable names are swapped and the location of
the method return types is different in TypeScript.
Additionally, it is recommended to avoid concepts such as
‘var’ (inferred types) in C# and the type ‘any’ in TypeScript,
not only to improve the compiler's type checking, but also to
improve code readability and self-documentation.

2) Transcompiling Typescript into JavaScript
As TypeScript, with its object-oriented syntax and type

checks, only exists at compile time, most object orientation is
lost in the transcompiled code. JavaScript interpreters are
highly optimised to obtain acceptable performance and omit
e.g. type checking: when calling transcompiled TypeScript
code from JavaScript at runtime, no type checking occurs.
Besides adding additional checks on method input parameters
passed to component methods, API documentation may be an
even more important way to prevent these issues of passing
parameters.

Although the JavaScript code in Table I is structurally very
similar to the TypeScript code, it is clear that all type checking
is omitted in the transcompiled code. Furthermore, the
transcompiler generates some additional code to mimic the
object-oriented concepts with pure JavaScript code. Finally,
code comments are also present in the generated JavaScript.

a) Run time checks
Some checks that can be easily performed in C# are not

possible in JavaScript, for instance checking at runtime
whether or not a particular interface is implemented. Such
check is not possible as the required information, called Run-
Time Type Information (RTTI), does not exist in the resulting
JavaScript. As a workaround, the BaseAsset.getInterface
method parameter was changed into a method name parameter
instead of an interface type and internally uses the bridge’s
prototype to check for the interface method’s presence. As this
does not check for the complete interface it is not as strongly
typed as the C# code.

b) Variable declaration and scope
JavaScript and TypeScript also display different

behaviours with respect to variable declaration and scope. In
compiled languages, variable declaration and scope follow the
location in the code. Firstly, a variable cannot be used in
compiled languages before it is declared and compiled, and
secondly, initial assignments are performed at the location of
the declaration. In JavaScript, variable declarations are

silently moved to the top of the code block, but the initial
assignment of a value is not moved [20]. This easily results in
the presence of uninitialised variables or masking of a global
variable with an uninitialized variable, if a local variable
happens to have the same name as a variable in an outer scope.
This kind of bugs can be very hard to trace.

c) Data formats
Data is also stored differently as the component

architecture does not prescribe a particular data format.
Instead, the RCSAA focuses on the best natively supported
format. For C#, only XML is supported natively in the .NET
version 3.5 and above. Although .NET 3.5 introduces some
JSON support with a DataContractJsonSerializer class [21],
this class is not supported by the .NET 2.0 version used by
Unity3D. For JavaScript, JSON is currently the only format
natively supported in recent browsers, which all implement a
built-in JSON object [22].

Beside the data format, there is also an important
difference in behaviour when (de)serializing data. Unlike C#
and Java, it is not possible to fully restore a class instance in
JavaScript (and thus in TypeScript), including class methods.
Restoring JSON creates an object with only data and thus
results in a complete loss of all class methods. For this reason,
the BaseSettings class in RCSAA cannot contain any methods
and de-serialization code is located in the BaseAsset class.

d) Other issues in JavaScript
Other differences in behaviour originate from the

interpreter nature and single-threadedness of JavaScript. The
use of methods such as setTimeout (for broadcasting
messages) imply that these messages are sent when the
interpreter is idle, so when all other executed code has
finished. As a result, it is possible that subscribers receive
updates if they have subscribed after the publication of the
update. In C# and Java, doing the same will not have any
effect as the messages are sent immediately, thus before any
further subscriptions could take place.

Finally, the interpreted JavaScript easily allows for self-
modifying code which is hard to achieve in compiled
languages such as C++, C# or Java. This feature, although
powerful, was avoided as it cannot be ported easily to any
other compiled language.

B. Porting to Java
1) General considerations
Java is an object-oriented language that has a long history,

predating C#. In contrast to C#, which has been in continuous
development and has been extended with new language
features, Java has known a long period of minor development,
exposing only few new features in the past years. Although
Java has many different features, it lacks some of the more
modern features present in C#. Most obvious is the lack of
clear syntax for properties as found in C#. In C#, the compiler
takes care of converting a property into accessor methods and
backing storage. Properties are often used in C# to expose
public values that can be read or written by other code. Java,
instead, mimics properties with a naming convention (get/set
method name prefixes) and therefore forces a programmer to
re-implement trivial implementation code repeatedly, with an
increased chance of coding errors. Nevertheless, not all
methods that have a get or set prefix mimic a property. A 3rd
party project called Project Lombok [23] addresses this

omission and enriches Java with a compact property syntax
that compiles automatically into high-quality code.

In C#, all data types, even numbers and Boolean values,
are treated as objects. In C#, statements such as 7.ToString()
or (9+1).ToString() are perfectly legal as the numeric values
are treated as objects. The C# compiler optimises this code
during compilation. In contrast, Java has C/C++ alike non-
object primitive types [24] such as int, double, boolean and
object counterparts such as Integer, Double, and Boolean that
box their primitive counterpart types. Primitive types are not
objects and do not have methods. The mix of primitive types
and objects forces a bad practice [25] of a manual optimization
by the programmer instead of delegating the optimization to
the compiler.

The code in Table II looks very similar as both C# and Java
have extensive support for object-oriented principles. The
definition of a property in Java shows how it relies on more
extensive coding and naming conventions to emulate the very
compact C# property syntax.

2) Specific Java porting issues encountered
a) The Asset Manager

The first step in porting the C# code for the TwoA
component to Java was to update the Asset Manager code to
be aligned with its C# counterpart. Updating was largely a
matter of refactoring classes, method and field names and
adding, as is a common practice in Java, the ‘final’ keyword
to most fields and method parameters, marking them
immutable.

TABLE II. COMPARISON OF THE CONSTRUCTS IN C# AND JAVA.

Programming language
C# Java

// a namespace
namespace AssetPackage {

// an interface
 public interface IAsset {}

 // a class
 public class BaseAsset : IAsset {

 // a constructor
 public BaseAsset() {}

 // a method
 public Boolean LoadSettings
 (String filename) {
 return true;
 }

 // a property
 public IBridge Bridge {
 get; set;
 }
 }
}

// a package
package
eu.rageproject.asset.manager;

// an interface
public interface IAsset {}

// a class
public class BaseAsset extends
IAsset {

 // a constructor
 public BaseAsset() {}

 // a method
 public Boolean LoadSettings
 (final String filename) {
 return true;
 }

 // a property backing field
 private IBridge bridge;

 // getter
 public IBridge getBridge() {
 return this.bridge;
 }

 // setter
 public void setBridge(final
IBridge bridge) {
 this.bridge = bridge;
 }
}

In the AssetManager test suite, we encountered issues with
the test suite implementation of IDataStorage interface on the
Bridge class and in particular the usage of the ‘user.dir’
environment property.

Despite its description ‘User working directory’ it points
to the directory where the Java Virtual Machine (JVM) was
started. In our case, this turned out to be the Visual Studio
Code installation directory, which is write protected.
Swapping the environment property for ‘user.home’, which is
the user home directory and is writable, solves the issue.

The ILog interface resulted in some issues with the
LogLevel enumeration. Whilst in C# we could simply define
the LogLevel values by combining Severity enumeration
values using a logical OR operator, in Java, it is needed to
define these values as separate EnumSet fields and create the
LogLevel enumeration based on EnumSet fields. Although the
EnumSet fields alone might seem sufficient, they would not
provide type-safety of the LogLevel enumeration.

The AssetManager singleton patterns were re-
implemented using a single value enum instead of a plain
class. According to Bloch [25], this is by far the simplest yet
best solution as the single instance is thread-safe, enforced by
the compiler and has no issues with deserialization.

b) Unsigned integers
During porting the TwoA core functionality, issues arose

with the SimpleRNG class as it used unsigned integers, which
are not present in Java [16]. The common solution is to use
bigger signed integers (so 32-bit unsigned integers are stored
in 64-bit signed integers) [27]. As the C# SimpleRNG code
used logical bit shift operators, it needed to be rewritten and
tested separately in order to yield the same results.
Additionally, we needed to add some suffixes to some
numeric values (like L for long) in order to aid the compiler.

c) Date
The Date API suffers major flaws and is heavily

deprecated [28]. We recoded all C# DateTime using the new
Java 8 LocalDateTime class. Use of this newer class results
however in a new issue. Both ZonedDateTime and
LocalDateTime lack a parameter-less constructor, which
make them incompatible with JAXB XML deserialization. A
solution is to register JAXB XmlAdapters to enable a custom
conversion between text and both ZoneDateTime and
LocalDateTime.

d) XML
The XML formatted logging showed issues with floating

point to string conversions as used by the String.format()
method. It uses the decimal separator defined by the operating
system which is not necessarily the dot required for XML.
Adding a Locale.ROOT to the String.format() method fixed
these conversions [29]. XML serialization also suffers from
differences between the Java and C# naming conventions
resulting in a mismatch in character case of XML tags. Adding
XmlElement annotations to all affected methods specifying the
correct case solved this issue.

e) Other issues in Java
In Java, the ’const’ keyword is reserved, but not

implemented [30]. The closest alternative is the ‘final’
keyword that is used to mark fields and method parameters as
immutable once given a value, which makes it more
equivalent to the C# ‘readonly’ keyword. However, when

used on classes, ‘final’ is closer to the C# ‘sealed’ keyword
that prevents a class to be sub-classed. Finally, when applied
to methods the ‘final’ keyword prevents overriding the
method.

Java also lacks support for static constructors. However, it
allows for one or more static code blocks in a class, so one can
simply move the static constructor's code of the Cfg class into
such block.

Exceptions in Java have some fundamental differences
with those in C#. They need to be either caught on the spot or
be specified as a throws annotation in the method signature.
The latter feature leads to accumulation of these annotations
up in the class hierarchy and to an exception bubble upwards
in this hierarchy until they are actually caught with a try/catch
block. In C#, no such annotations are necessary, and exception
handling remains a responsibility of the programmer.

The resulting Java version of the TwoA component has
2503 lines of code in 13 classes.

IV. INTEGRATING RCSAA PORTS IN DIFFERENT GAME
ENGINES

Table III presents the overview of component integrations
carried out across different programming languages and game
engines. The C# version of the TwoA component was
integrated and used in an exemplary target game, called
TileZero [6]. This game is a derivative of the popular turn-
based board game Qwirkle (http://www.mindware.com). It
focuses on problem-solving for developing spatial,
mathematical, and fluid reasoning skills [31] TileZero allows
for parametrically generating a variety of problems of various
difficulty levels, it can greatly benefit from the TwoA
component, which returns after each task completion the
recommended difficulty level of the subsequent task, thereby
optimising the player’s learning curve. TileZero was
implemented in the MonoGame game engine, which is a
portable open-source Mono-based and OpenGL-based game
engine (monogame.net; [32]).

TABLE III. INTEGRATION CASES OF TWOA PORTS.

Case
Language Game Engine

C# TileZero MonoGame

C# I/O simulation Unity

C# I/O simulation Xamarin

JavaScript I/O simulation Cocos2D-JS

Java I/O simulation Emergo

Tests of the integration with other C# game engines, viz.

Unity and Xamarin, have been reported elsewhere [6]. All of
these game engines support a large number of leading target
user platforms, covering different hardware configurations
and operating systems including Windows desktop, iOS,
Android and Windows Phone. RCSAA-compliant ports of
TwoA from C# to JavaScript (TypeScript) and Java were
integrated in Cocos2D-JS game engine (https://cocos2d-
x.org) and the Emergo game engine [33], respectively. For
testing in these engines game engine code was used that
simulates the interactions of TileZero between the component

and the game engine. This way laborious ports of the full
TileZero game to both Typescript and Java could be avoided.

A. Integrating the C# component in MonoGame
The integration of the C# version of the TwoA component

in the TileZero game has been described in detail in [6].
Basically, the component uses its Asset Manager to make its
instance accessible for the game. The Bridge pattern is used to
enable the TwoA component to call methods from the game
and the MonoGame engine without the need to have
knowledge about the game´s implementation details. The
Bridge can also realise additional interfaces that enable a
component to delegate common functionalities to standard
libraries provided by the game engine. For instance, the
component may request the game engine to load or save files.
By delegating such generic functionalities from the
component to the game engine and the RCSAA libraries,
simplifies component development and leaves more time for
the developer to spend on the implementation of the core
gamification and pedagogical functionalities. Details of
integrating C# versions of TwoA in Unity and Xamarin are
also in [6].

B. Integrating the TypeScript/JavaScript port in Cocos2D-
JS
The TypeScript version of the TwoA component was

integrated in the Cocos2D-JS engine. This engine relies on
JavaScript and HTML5. After creating a project in Visual
Studio that included a Cocos2D-JS library written in
JavaScript and the TwoA component written in TypeScript,
the project could be transcompiled and integrated into a single
JavaScript file simulating gameplays of TileZero.

In JavaScript, the Asset Manager and the Bridge work
similar to the C# version. From the perspective of the
component, it does not matter in what form or where the
settings file is stored, as these details are abstracted from the
component by the Bridge pattern and implemented by the
game engine, thus proving full control to the game developer.
Cocos2D-JS uses Local Storage [34,35] to manage the
component's settings file. Local Storage was introduced in
HTML5 for web applications to store data locally within the
user's browser. Local Storage is distinct from cookies and,
among many differences, allows storage of several megabytes
of data. Ideally, Local Storage is persistent, and data can
remain across sessions as well as after closing the browser.
However, this persistence also depends on the browser's
history and privacy settings and therefore should be used
cautiously. Hence, having a persistent storage on the user's
platform may remain problematic for components written in
JavaScript/TypeScript.

Another notable difference from the C#-based
implementation is storage of the component's settings in JSON
format rather than XML format. JavaScript provides a native
interface for parsing a JSON string into objects. In the TwoA
case, the settings for scenarios and players are automatically
de-serialized into JavaScript objects by using the available
method for this.

Finally, the Bridge object enables logging. Note that the
TwoA component provides information to be logged, but as is
the case for settings, it does not specify where and in what
format the logged information should be managed. The TwoA
component only knows that logging functionality is available
via a Log method inherited from the BaseAsset class. The Log
method locates an ILog interface subsequently uses it. The

Bridge's ILog implementation calls the logging functionality
of Cocos2D-JS, which then returns a given string to the
browser's console.

C. Integrating the Java port in the Emergo game engine
Emergo [33] is a server-based environment written in Java

that allows educators to create scenario-based serious games
for students using the separate modules, module configuration
and scenario building functionality that Emergo supplies.
Educators and students access this environment using a web
browser. In order to integrate the TwoA component into the
Emergo environment, it needs to be wrapped inside an
Emergo module so that the TwoA component can be
instantiated, becomes available within the Emergo toolkit and
its API be exposed to the scenario building functionality of
Emergo. The wrapping module supplies the game engine code
for the Bridge object that the TwoA component expects and
uses to save and load its data.

Because of its server-based architecture, the Emergo
engine needs to track and update game data for multiple users.
However, the TwoA component currently does not support
multiple users updating their scenario ratings. As a result, the
bridge implementation must cope with this and save the
scenario and gameplay data as files on a per user base. This is
quite possible, because the Asset Manager supports
registration of multiple instances of a single RCSAA
component and returns unique ids for each component
registration. This allows the bridge, which is needed to save
and load scenario and gameplay data, to be attached to the
individual instances of a component instead of being attached
to the Asset Manager. With the addition of a user-id field to
the bridge it is easy to keep the user data separate from the
data of other users. As Emergo is relying on a database for
main storage, a more sophisticated integration solution is to
have the bridge save scenario and gameplay data as a blob in
a database table instead of using the file system. It
demonstrates the benefit of the RCSAA component being
agnostic to where and how the bridge code actually stores
data.

Storing the scenario and gameplay data as individual
records is also possible but harder to implement as it would
require parsing the XML-formatted data generated by the
TwoA component and determining which data is changed.
Likewise, results of a query would have to be converted into
the expected XML format. Such approach would, however,
conflict with the principles of the RCSAA as it requires the
bridge implementation to have detailed knowledge of the data
format being requested to be stored or retrieved by the
component. It would also require knowledge of the file
identifiers used by the TwoA component for the scenario and
gameplay data as their data format differs.

D. Validation of the ported versions
The functioning of the ported component versions was

tested by using the C# implementations as a reference. For
TwoA, extensive validations of the C# version of the
algorithm integrated in the TileZero game have been reported
elsewhere, both using empirical performance data [16] and
using machine-against-machine simulations [6]. A similar
range of testing matches could then be simulated for the
TypeScript/JavaScript and Java implementations by sampling
from the performance data (match duration and outcome)
produced by the C# simulation. The correct functioning of the
ported TwoA algorithms could be confirmed by the identical

learning curves that were found. This is quite straightforward
as the core code uses the same model. However, the
significance of these tests is not in verifying the correct
implementation of the core functionalities of the components
as such, but more importantly, in providing real-world proofs
of the portability and practicability of RCSAA-compliant
components: the relevant RCSAA-code constructs can be
ported across the three examined programming languages
without principal issues.

V. DISCUSSION AND CONCLUSION
In this study, we have provided further, practical evidence

for the (ecological) validity of the RCSAA [3] as a framework
for use and reuse of game software in different technical
environments. Conclusions can be summarised as follows.
First, it was shown that component development and reuse of
components are simplified by delegating generic
functionalities to the game engine and to the RCSAA. Second,
the RCSAA simplifies porting of the components across game
engines supporting a common programming language. Third,
the RCSAA also simplifies translation of the component’s
implementation to other programming languages. The power
of the RCSAA is not limited to the potential reuse of
components, but is also based on the efficient reuse of existing
libraries, either from the RCSAA or from the game engine in
use. To maximise the reusability of components among
different games, the components do not directly link with the
game´s user interface and exchange only the basic information
with the game engine. In the TwoA component, for example,
the core code of the component responsible for difficulty
adaptation requires only the exchange of string IDs and a few
numerical values such as the duration of a task. This qualifies
the integration of RCSAA components as “lightweight”,
which may promote its adoption.

In the case of JavaScript, being very different from object-
oriented languages, we have demonstrated that conversion of
the architecture's implementation from one language to
another is simplified considerably by using TypeScript as a
transient language. TypeScript was deliberately designed to be
similar in structure to object-oriented languages and C# in
particular. This makes a translation of C# code into
TypeScript code a relatively simple operation. The Bridge
pattern employed by the RCSAA adequately shields
components from platform-specific implementations of
necessary functionalities. As a result, components are easily
portable and reusable across different platforms. The benefits
are particularly obvious for the JavaScript-based
implementation. Browser specific issues are often a plague for
web applications based on JavaScript. The Bridge pattern
effectively decouples components from browser-specific
implementations thereby minimizing browser compatibility
problems and increasing their reuse potential. Furthermore,
the architecture encourages developers to concentrate all
browser-specific functionalities at bridges, thereby increasing
readability and decreasing effort needed for refactoring. Game
developers can address cross-browser portability with
minimal prior knowledge of the components. Having this
convenience is especially important for JavaScript-based
applications that are notorious for being difficult to refactor.

The Java version shows that the RCSAA is flexible
enough to even run in a complex server-side system such as
Emergo and that the Bridge interface can easily be mapped
onto an SQL database system as well, extending its portability
even further.

In summary, we have demonstrated how the RCSAA
promotes reusability at two distinct levels. First, the
architecture promotes plug-and-play reusability of a software
component among different game engines. Second, software
patterns and design solutions employed by the architecture are
reused in different programming languages including
JavaScript, which does not natively support object-oriented
design. Reusability at both levels is essential for the successful
adoption of software components in the domain of serious
games, which is notably suffering from a variety of platforms,
game engines, and programming languages. Given some
issues that surfaced with integration, be it minor ones, a
cautious and prolonged investigation is needed of the practical
factors and conditions that might corrupt seamless component
integration, both for C# and other languages.

ACKNOWLEDGMENT
This work has been partially funded by the EC H2020

project RAGE (Realising an Applied Gaming Eco-System);
http://www.rageproject.eu/; Grant agreement No 644187.

REFERENCES
[1] J. Stewart, L. Bleumers, J. Van Looy, I. Mariën, A. All, et al., The

Potential of Digital Games for Empowerment and Social Inclusion of
Groups at Risk of Social and Economic Exclusion: Evidence and
Opportunity for Policy. Centeno, C. (Ed.), Brussel: Joint Research
Centre, European Commission, 2013.

[2] S.J. Warren and G. Jones, “Overcoming Educational Game
Development Costs with Lateral Innovation: Chalk House, The Door,
and Broken Window. The Journal of Applied Instructional Design 4
(1), 51-63, 2014.

[3] G.W. Van der Vegt, W. Westera, E. Nyamsuren, A. Georgiev and I.
Martinez Ortiz, “RAGE architecture for reusable serious gaming
technology components”, International Journal of Computer Games
Technology, Article ID 5680526, 2016. DOI: 10.1155/2016/5680526.

[4] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, et al. ,
Technical concepts of component-based software engineering, Volume
II. Carnegie Mellon University, Pittsburgh: Software Engineering
Institute, 2000.

[5] S. Mahmood, R. Lai and Y.S. Kim, “Survey of component-based
software development”. IET software 1 (2), 57-66, 2007.

[6] W. Van der Vegt, E. Nyamsuren and W. Westera, “RAGE Reusable
Game Software Components and Their Integration into Serious Game
Engines”, in: Proceedings of the 15th International Conference on
Software Reuse (ICSR 2016). Basel: Springer International Publishing,
2016, pp. 165-180,.

[7] G.L. Saveski, W. Westera, L. Yuan, P. Hollins, B. Fernández Manjón,
et al., “What serious game studios want from ICT research: identifying
developers’ needs”. In: Proceedings of the Games and Learning
Alliance conference (GALA 2015), Basel: Springer International
Publishing, 2015, pp. 32–41. DOI:10.1007/978-3-319-40216-1

[8] M. Dekkers. Asset Description Metadata Schema (ADMS). W3C
Working Group, 2013. Retrieved February 27, 2019 from
http://www.w3.org/TR/vocab-adms/

[9] W. Westera, W., Van der Vegt, K., Bahreini, M. Dascalu, et al.,
“Software Components for Serious Game Development”. In T.
Connolly & L. Boyle (Eds.), Proceedings of the 10th European
Conference on Games Based Learning, October 6-7 2016, Paisley,
Scotland: Reading UK,: ACPI, 2016, pp. 765-772

[10] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design patterns:
elements of reusable object-oriented software. London: Pearson
Education, 1994, pp. 171-183.

[11] K. Birman and T. Joseph. “Exploiting virtual synchrony in distributed
systems”, Proceedings of the eleventh ACM Symposium on Operating
systems principles (SOSP '87), Austin: 1987, pp. 123–138.

[12] P.T. Eugster, P.A. Felber, R. Guerraoui and A.M. Kermarrec, “The
many faces of publish/subscribe”, ACM Computing Surveys (CSUR)
35 (2), 114-131, 2003.

[13] E.J. Weyuker, “Testing component-based software: a cautionary tale”,
IEEE SOFTWARE 15(5), 54-59, 1998.

[14] S. Mahmood, R. Lai, Y.S. Kim, J.H. Kim, S.C. Park, et al. , “A survey
of component based system quality assurance and assessment”,
Information and Software Technology 47(10), 693-707, 2005.

[15] F. Fowler, “Mocks Aren't Stubs”, 2007. Retrieved February 27, 2019
from https://martinfowler.com/articles/mocksArentStubs.html

[16] E. Nyamsuren, W. Van der Vegt and W. Westera, “Automated
Adaptation and Assessment in Serious Games: a Portable Tool for
Supporting Learning”, in: Proceedings of the Fifteenth International
Conference on Advances in Computer Games 2017 (ACG2017).
Lecture Notes in Computer Science, vol 10664. Cham: Springer2017,
pp. 201-212. DOI:10.1007/978-3-319-71649-7_17

[17] A. Osmani, Learning JavaScript Design Patterns, Sebastopol, CA:
O’Reilly, 2014.

[18] F.S. Ocariza Jr. and K. Pattabirama, A Study of Causes and
Consequences of Client-Side JavaScript Bugs, IEEE Transactions on
Software Engineering 43(2), 128-144, 2017.

[19] Microsoft, TypeScript Language Specification, 2016. Retrieved
February 27, 2019 from
https://github.com/Microsoft/TypeScript/tree/master/doc/TypeScript
%20Language%20Specification.pdf

[20] Rauschmayer, A., JavaScript variable scoping and its pitfalls, 2011.
Retrieved February 27, 2019 from
http://2ality.com/2011/02/javascript-variable-scoping-and-its.html

[21] Microsoft, System.Runtime.Serialization.Json Namespace, 2018.
Retrieved February 27, 2019 from https://msdn.microsoft.com/en-
us/library/system.runtime.serialization.json(v=vs.90).aspx

[22] W3schools, JavaScript JSON, 2018. Retrieved February 27, 2019 from
https://www.w3schools.com/js/js_json.asp

[23] Project Lombok. 2018. Retrieved February 27, 2019 from
https://projectlombok.org

[24] Oracle, Primitive Data Types (The Java™ Tutorials > Learning the
Java Language > Language Basics). Oracle, 2017. Retrieved February
27, 2019 from
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.ht
ml

[25] J. Bloch, Effective Java, New Jersey: Addison-Wesley, 2008.
[26] Project Nayuki, Unsigned int considered harmful for Java, 2018.

Retrieved February 27, 2019 from
https://www.nayuki.io/page/unsigned-int-considered-harmful-for-java

[27] N. Coffey, What is the Java equivalent of unsigned?, 2008. Retrieved
February 27, 2019 from
https://javamex.com/java_equivalents/unsigned.shtml

[28] B. Evans and R. Warburton, Java SE 8 Date and Time, 2014. Retrieved
February 27, 2019 from
http://www.oracle.com/technetwork/articles/java/jf14-date-time-
2125367.html

[29] Oracle, Class Locale, 2017. Retrieved February 27, 2019 from
https://docs.oracle.com/javase/7/docs/api/java/util/Locale.html#ROO
T

[30] Oracle, Java Language Keywords, 2008. Retrieved February 27, 2019
from
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.h
tml

[31] A.P. Mackey, S.S. Hill, S.I. Stone and S.A. Bunge, “Differential effects
of reasoning and speed training in children”, Developmental Science
14 (3), 582-590, 2011.

[32] J. Pavleas, J.K.W. Chang, K. Sung and R. Zhu, “Learn 2D Game
Development with C#”, New York: Apress, 2013, pp. 11-40.

[33] A. Slootmaker, H. Kurvers, H. Hummel and R. Koper, “Developing
scenario-based serious games for complex cognitive skills acquisition:
Design, development and evaluation of the EMERGO platform”,
Journal of Universal Computer Science 20(4), 561-582, 2014.

[34] M. Casario, P. Elst, C. Brown, N. Wormser and C. Hanquez, “HTML5
local storage”, in: HTML5 Solutions: Essential Techniques for
HTML5 Developers. New York: Apress, 2011, pp/ 281-303.

[35] W. West and S.M. Pulimood, “Analysis of privacy and security in
HTML5 web storage”, Journal of Computing Sciences in Colleges 27
(3), 80-87, 2012.

http://www.w3.org/TR/vocab-adms/

	I. Introduction
	II. The RAGE client-side architecture (RCSAA)
	A. Components
	B. The RCSAA design solution

	III. Real-world implementations of the RCSAA
	A. Conversion from C# to TypeScript/JavaScript
	1) General considerations about JavaScript
	1) Using TypeScript as an intermediate
	2) Transcompiling Typescript into JavaScript
	a) Run time checks
	b) Variable declaration and scope
	c) Data formats
	d) Other issues in JavaScript

	B. Porting to Java
	1) General considerations
	2) Specific Java porting issues encountered
	a) The Asset Manager
	b) Unsigned integers
	c) Date
	d) XML
	e) Other issues in Java

	IV. Integrating RCSAA ports in different game engines
	A. Integrating the C# component in MonoGame
	B. Integrating the TypeScript/JavaScript port in Cocos2D-JS
	C. Integrating the Java port in the Emergo game engine
	D. Validation of the ported versions

	V. Discussion and Conclusion
	Acknowledgment
	References

