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Abstract—Stealth assessment is a methodology that utilizes 

machine learning for processing unobtrusively collected data 

from serious games to produce inferences regarding learners’ 

mastery level. Although stealth assessment can produce valid and 

reliable assessments, its robustness over a wide a range of 

conditions has not been examined yet. The main reason is its 

complex, laborious, and time-consuming practical application.  

Therefore, its exposure to different conditions has been limited, 

as well as its wider uptake from the serious game community. 

Nevertheless, a framework for developing a generic tool has been 

proposed to lift its barriers. In this study, a generic SA software 

tool was developed based on this framework to examine the 

robustness of the stealth assessment methodology under various 

conditions. In specific, the conditions relate to (a) processing 

datasets of different distribution types and sizes (960 datasets 

containing a total of 72.336.000 data points are used for this 

reason),  (b) utilizing two different machine learning algorithms 

(Gaussian Naïve Bayes Network and C4.5), and (c) using 

statistical models relating to two different competency constructs. 

Results show that stealth assessment is a robust methodology, 

whilst the generic SA tool is a highly accurate tool capable of 

handling efficiently a wide range of conditions. 

 
Index Terms—generic tool, machine learning, robustness, 

serious games, simulation, stealth assessment 

 

I. INTRODUCTION 

ERIOUS games have been framed in recent years as one 

of the most promising alternatives to traditional education 

primarily for learning and training purposes [1]. Well-

designed serious games can enable active learning [2] within 

engaging environments that can enhance learners’ intrinsic 

motivation [3] and support the development of 21st century 

and other skills [4].  Furthermore, serious games can facilitate 

effective assessments [5] since detailed learner traces can be 

collected during gameplay in order to classify learners’ 

performances.  
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However, to ensure the validity and reliability of 

assessments in serious games [6, 7], principled assessment 

design frameworks must be used. These frameworks facilitate 

the design of conceptual constructs for competencies (i.e. 

skills, abilities, etc.) and in-game tasks, as well as 

computational models that express the relationship of evidence 

(i.e. data) collected during gameplay to these conceptual 

constructs. One of the most prominent assessment 

methodologies coupled with such frameworks is referred to as 

stealth assessment (SA) [8].  

SA is an assessment methodology that allows for the 

unobtrusive collection and computational analysis of 

meaningful evidence during gameplay to provide probabilistic 

reasoning over learners’ mastery level by using machine 

learning (ML) technology. It combines the use of (1) a 

principled assessment design framework, which is the 

Evidence-Centered Design (ECD) approach [9, 10] along with 

(2) ML technology. So far, SA has shown to be a valid and 

reliable assessment solution in diverse domains, such as 

physics [11], persistence [12], and problem-solving [13]. 

Despite these existing proof cases, its practical application is 

still problematic, requiring a complex, laborious and time-

consuming process [14]. The complexity of SA relates to the 

expertise that is needed such as knowledge in game 

development and design, ML algorithms, instructional design, 

learning materials, psychometrics, statistics, etc. The 

laboriousness of SA relates to the fact that so far it has only 

been developed as part of a specific game’s source code. Such 

hardcoded, game-specific solutions cannot readily be 

transferred from one game to another. Therefore, applying SA 

for new assessment needs requires software development and 

validation from scratch. Of course, this process is considerably 

time-consuming and prone to mistakes. Supportive tools for 

the wider accommodation of SA or the replication of SA in 

other games have not been available.   

To lift the barriers of SA, a framework for developing a 

generic tool for SA has been proposed [15]. That is, a stand-

alone software tool that (1) supports the handling of numerical 

data from any serious game, (2) automates the required ML 

processes, and (3) allows the easy arrangement of different 

ECD models (depending on the competency at hand). In this 

way, the expertise, labor, and development time needed to 

create and apply SA would be drastically reduced. 

Consequently, the costs for applying SA in serious games can 

be reduced or even be eliminated, which would amplify the 

adoption of SA by the serious game community. Moreover, 

the availability of such SA tool would allow investigating the 

applicability of the SA methodology in a systematic way, 

rather than collecting incidental evidence on a case-by-case 
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basis. 

To this end, a generic stealth assessment tool (namely 

GSAT) has been developed according to the aforementioned 

framework. This tool allows us to examine the robustness of 

the SA methodology against various conditions of the ML 

approaches. These conditions account for the variability of 

outcomes that can occur when applying SA in serious games, 

and thus reflect a wide spectrum of use cases. The variability 

relates to (1) the data, (2) the ML algorithms, and (3) the ECD 

model variances. Accordingly, this paper aims to answer the 

following research questions:  

• How robust is the SA methodology when handling 

datasets of different normality significance levels?  

• How robust is the SA methodology when handling 

datasets of different sample sizes?  

• How robust is the SA methodology when using different 

ML algorithms for numerical datasets?  

• How robust is the SA methodology when handling 

different ECD models? 

To address these research questions, a large variety of 

simulation datasets were generated encompassing as many as 

possible different cases, in particular reflecting different 

sample sizes and different normality significance levels. Two 

principal ML algorithms were used to produce inferences with 

respect to the data contained in the datasets, (1) a parametric 

ML algorithm called Gaussian Naïve Bayesian Network 

(GNBN), and (2) a non-parametric ML algorithm, which is a 

Decision Tree called C4.5, respectively. Finally, ECD models 

for two different hypothetical competencies were examined. 

Both a two-dimensional and a three-dimensional competency 

construct were devised, assigned to a fixed number of 

observables to form respective statistical models. The number 

of the observables was fixed across all the examined 

conditions to be able to draw safe conclusions from the results. 

In the following of this study, background information 

about SA is provided in section II. Information about the 

generic SA tool is presented in section III. The methodology 

that was used to answer the posed research questions can be 

found in section III. Section IV presents the results of this 

study. The results are discussed in section VI, while the 

conclusions and future research plans are in section VII.  

II. STEALTH ASSESSMENT BACKGROUND 

As described before, SA consists of two main ingredients. 

That is: (a) the ECD framework for arranging assessments 

based on valid and reliable constructs and (b) ML technology 

to enable the probabilistic assessment of the learners’ mastery 

level on a certain competency.  

A. Evidence Centered-Design (ECD) 

ECD is a principled assessment design framework that 

includes several essential elements for modeling the 

assessment process in a valid and reliable manner. These 

elements are: (1) the competency model, (2) the task model, 

and (3) the evidence model. The competency model describes 

the competency construct, which includes the underlying 

factors (i.e. facets, sub-skills, etc.) that constitute the 

competency to be assessed. The task model describes a set of 

in-game tasks that can allow the elicitation of proper evidence 

with respect to the competency construct. The evidence model 

is a link between the competency model and the task model, 

which describes the relationship of the observed in-game 

performance (i.e. observables) to both the in-game tasks and 

the underlying competency constructs. For this reason, it 

consists of two different sub-models: (1) the evidence rules 

and (2) the statistical model. The evidence rules describe the 

relationship between the observed performances and the in-

game tasks, while the statistical model describes the 

relationship between the observed performances and the 

competency construct.  

Mislevy and colleagues [19] were the first to describe ECD 

as a generic methodology for developing assessments. 

Thereby, the conceptual models of ECD can act as generic 

definers for describing detailed assessment elements. This 

means that ECD can host competency models of any shape 

and size (consisting of any number of subordinate facets, sub-

facets, etc.), task models consisting of any number of tasks, 

and evidence models consisting of any number of observables 

(and respective mappings of these observables to components 

of the competency and task models). Since SA resorts to the 

ECD for arranging assessments in serious games, it thus also 

represents a generic assessment methodology. 

 

B. Machine Learning Technology 

In education it is very common to use scoring systems 

based on test items (such as self-report questionnaires and 

multiple-choice tests) for assessment purposes. These allow 

the teachers to grade the learners and determine their 

knowledge states. While this assessment process is well-

established, it has certain limitations [16]. For example, it is 

not capable of testing for imponderables such as critical 

thinking, creativity, and other 21st century skills, especially in 

time-limited examinations, thus rendering it rather inadequate 

as a means for preparing learners towards lifetime learning 

and professional success in the 21st century.  

Nevertheless, as we gradually transit to an age of an 

increasing digitalized education more opportunities arise for 

accessing far richer learner data than what was possible in 

traditional classrooms. Here, ML would allow for extracting 

meaningful information from learners’ data traces, by first 

learning from this rich data and accordingly analyzing it to 

provide inferences about mastery of competencies. Within the 

field of serious games, SA proposes the use of ML technology 

for classifying learners’ performances by utilizing data related 

to their in-game behaviors and decisions, which is logged 

during gameplay. Originally, Bayesian Networks were 

preferred [8], but also other ML algorithms such as Decision 

Trees, Neural Networks, Logistic Regression, Support Vector 

Machines, and Deep Learning have been examined for SA 

[17, 18]. 

III. A GENERIC STEALTH ASSESSMENT TOOL 

So far, in the literature only hard-coded solutions of SA in 
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case-specific applications have been reported. That is because 

SA has been originally viewed as a methodology that should 

be directly integrated within the gaming environment [20]. 

This point of view has served well the purpose of empirical 

studies that aimed at providing a proof of concept for SA. But 

the lack of generic tools that would support the definition and 

implementation of SA in serious games has hampered both the 

systematic investigation of SA under various boundary 

conditions and the adoption of SA by serious games 

practitioners [14]. 

To lift these barriers, a stand-alone software tool was 

developed that implements the SA methodology in a generic 

format, that is, it allows for dealing with datasets of different 

distribution types and sizes, different competency constructs 

and different ML algorithms. In this paper, the tool is used to 

investigate the robustness of the SA methodology against 

different boundary conditions. The SA tool was developed as 

a client-side console application in the C# programming 

language using the .NET framework. In the following 

subsections a description of the software tool is presented. 

That includes a user case that elaborates its workflow design 

as well as the external libraries that were used to realize it.  

A. SA Use Case Description 

To set-up and run a SA, assessment experts, being the 

primary users, engage in various interactions with the SA tool. 

Fig. 1 depicts the SA workflow design from this user 

perspective. Upon start, the user selects whether to initiate a 

new SA or not (step 1). If not, then the workflow terminates. 

Else, the system automatically loads data (viz. game log data) 

from a spreadsheet file located in a pre-defined file path (step 

2). It should be noted that in current version of the tool certain 

assumptions are made about the data contained in the 

spreadsheet file (e.g. the data is numerical and ordered in 

ascending order) to avoid unhandled exceptions.  When done, 

the system normalizes the data so that the values of all the 

observables (i.e. game variables) scale from 0 to 1 (step 3). In 

this way, the observables align with each other on a common 

scale. Then, the system checks whether the data is labeled or 

not (step 4), since unlabeled datasets cannot be handled by 

supervised ML algorithms such as GNBN and C4.5. If the 

data is unlabeled, the system runs a clustering-based method 

for automatically assigning labels to the data (step 5). This 

method is explained in section IV. Next (step 6), the system 

proceeds with automatically loading ECD models from a pre-

defined configuration file. The configuration file (.config 

format) can automatically be generated by the software tool 

since it allows its user to easily create it through its user 

interface.  Once the ECD models are loaded in the system, the 

user can select which of the implemented ML algorithms 

should be used (step 7). So far, this is either GNBN or C4.5 

for the purpose of this study, but other ML algorithms can be 

readily added to the tool. Thereafter, the system runs the 

selected ML algorithm based on pre-defined optimizations that 

fit the needs of this study (step 8). In later versions of the tool 

user-defined optimizations will be allowed to enhance 

flexibility and usability (e.g. allowing the user to set the 

tolerance level of the selects ML algorithms and adjusting the 

percentage split for the training and testing datasets). In step 9 

the tool executes the selected ML algorithm and in step 10 it 

accordingly provides output regarding both the learners’ 

performances (the assessment) and the performances of the 

ML algorithms (which allows for comparing the results for 

different conditions). 

B. External libraries 

A set of libraries was imported to implement the SA tool: 

EPPlus was used to enable importing data from spreadsheets 

(Excel files), while the Accord.NET framework was used to 
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Fig. 1. Workflow of SA application 
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apply the machine learning functionalities. On a side note, it 

useful to mention that Excel is compatible with data streams 

generated with standards for learning analytics from serious 

games, such as xAPI  

IV. RESEARCH METHODOLOGY 

This section presents the methodology that was used to 

examine the robustness of SA. 

A. Experimental Setup 

Several conditions are examined within this study in order 

to examine the robustness of SA. The setup for examining 

these conditions includes the use of both a configuration file 

(containing hypothetical ECD models) and spreadsheets 

(containing the simulation datasets) as inputs to the generic 

SA software tool. A total of 960 different simulation datasets 

were generated and entered into the tool (one run of the 

software required for each) to obtain the necessary outputs 

concerning the performance of the ML algorithms across all 

conditions. Thereafter the outputs were analyzed through 

several R scripts that were developed for answering the posed 

research questions. A schema of the experimental setup is 

presented in Fig. 2. 

B. ECD Models 

As previously mentioned, ECD is a conceptual framework, 

which can be utilized (among other things) to design 

competency constructs. These tree-like constructs can branch 

to form constructs of any size and shape. Of course, testing the 

software tool against any possible construct is not feasible due 

to the infinite possible ECD model variations. Therefore, we 

decided to include in this study elementary constructs, which 

could be easily extended at a later stage since the software tool 

has no restrictions on the scalability of the competency 

constructs. These competency constructs are hypothetical to 

the extent that they represent abstracted, de-contextualized 

container structures not directly bound to specific domains or 

skills. The first competency is composed of two separate 

facets (sub-competences in the tree), while the second 

competency is composed of three separate facets.  

For each competence a set of observables should be 

specified, making up the associated statistical models of the 

ECD.  The hypothetical statistical models were set to include 

eleven conditionally independent observables (four for the 

two-facet construct and seven for the three-facet construct, 

respectively. These observables were intuitively mapped to the 

facets of the competency constructs, thus defining the 

statistical models (cf. Fig 3.). The task models and evidence 

rules were not relevant for this study since these models are 

only relevant for designing the serious game. In this study 

however we solely focus on the testing of a software tool that 

deals with the measurement, computation, and analysis of 

learning from gameplay data, that is, not with game design 

aspects that can potentially elicit desired in-game behaviours 

given a specific game case.  Thus, it was unnecessary to 

include them here. 

C. Generation of Datasets 

Several R scripts were developed to generate the necessary 

simulation datasets and store these in spreadsheet files for 

processing by the SA tool. These files include continuous data 

of different distribution types and sample sizes. For our 

purposes, the use of generated datasets is superior to using 

real-world game data, because the latter generally lack scale 

and do not allow for differentiated inputs to investigate 

robustness under various conditions. In other words, we argue 

that a simulation approach is ideal for testing Smart CAT’s 

operational robustness since suited real-world learning data 

from serious games is hard to find or collect (especially in 

large volumes), and also harder to control and adjust for the 

examined test conditions. The test conditions of this study 

were examined by using 80 datasets per condition, requiring a 

total of 960 spreadsheet files (simulation datasets). The full set 

of spreadsheet files contained a total of 72.336.000 data 

points. Below we explain the different testing conditions. 

1) Testing Under Violations of Normality 

ML algorithms such as Bayesian Networks assume that the 

data is normally distributed. In educational practice, however, 

it is likely that log datasets will deviate from the normality 

requirement, which may affect the reliability of SA outcomes. 

To investigate the robustness under normality violations 8 test 

conditions (hence 640 datasets each containing 10,000 data 

points per observable for both competencies) with different 

normality significance levels were examined.  

To achieve this, 80 datasets were generated per condition; 

each containing data for every declared observable within the 

following normality significance level (p value) intervals: (a) 

𝑝 ∈ [1.0, 0.8), (b) 𝑝 ∈ [0.8, 0.6), (c) 𝑝 ∈ [0.6, 0.4), (d)  𝑝 ∈
[0.4, 0.2), (e)  𝑝 ∈ [0.2, 0.1), (f)  𝑝 ∈ [0.1, 0.05), (g)  𝑝 ∈
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Fig. 2. A view of the experimental setup. 

Fig. 3. A view of the two statistical models (Obs stands for observable). 
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[0.05, 0.01), and (h)  𝑝 ∈ [0.01, 0). A single-sample 

Anderson-Darling normality test was performed every time 

that a new set of data points was included in the dataset for an 

observable to examine the p value. Each time that the 

boundary conditions were not met a new set of random data 

points were generated by using a different seed value. The 

mean x̅ values of these observables were arbitrarily set to 5, 

100, 10, 250, 50, 3,000, 500, 15, 150, 1,000, and 200 

respectively, be it that the SA tool directly procures 

normalization after importing the files into it (cf. step 3 in Fig. 

1). 

2) Testing of Reduced Sample Sizes 

As previously mentioned, 10,000 data points were assigned 

on each of the 11 observables declared within the spreadsheet 

files. However, real-world datasets from serious games are 

usually smaller in size. For this reason, we also generated 

datasets of both 1,000 and 100 data points per observable. All 

these data points were randomly sampled from normal 

distributions (𝑝 ∈ [1.0, 0.8)). To examine how the system 

would react to non-normality, we also generated datasets of 

highly non-normal distributions (𝑝 ∈ [0.01, 0)) at these 

sample sizes. Thus, a total of 320 spreadsheet files were 

additionally generated to examine these 4 conditions (80 files 

per condition). 

D. Machine Learning Algorithms 

Two ML algorithms were implemented at the SA tool, 

namely a GNBN and a C4.5. This allows to compare the 

performance of a parametric ML algorithm (GNBN) to a non-

parametric one (C4.5) in all set conditions. These conditions 

deliberately violate some of the statistical assumptions 

holding, especially for the GNBN which is regarded to be 

working efficiently only in conditions of normality.  

The two ML algorithms were optimized to fit the needs of 

this study. Firstly, they were tuned to classifying learners’ 

performance in 3 different levels (Low, Medium, and High) 

since SA allows for non-binary assessment outputs due to its 

probabilistic nature. Nonetheless, even more levels of 

classifications could be defined depending on the assessment 

needs at hand. For this study, we opted for a minimum of 

classification output diversion that is in accordance to 

previous empirical studies for SA [11, 12, and 13]. Secondly, 

a regularization factor was set for the GNBN at 0.00001 in 

order to avoid zero variances. In addition, a random seed value 

was set to randomize the data before training the two ML 

algorithms. Thirdly, a split rule was applied on both the 

algorithms for training (66%) and testing (34%) the data. 

Lastly, we made sure that at least one data point would be 

assigned to each class for training the classifiers. The rest of 

the training dataset was randomly sampled from the data pool. 

E. Pre-Processing of the Data 

During runtime, the SA tool pre-processed the datasets, in 

order to automatically label the data. That is, in contrast to 

existing empirical SA studies where experts are used to label 

the data. However, we opted to use a data-driven approach for 

labelling the data firstly because the data is de-contextualized 

and therefore cannot be meaningfully annotated by experts, 

and secondly because we consider this approach to be more 

valid, unbiased, and generic. The pre-processing step included 

the normalization of the data followed by a clustering 

approach for labeling the data.  

1) Normalization of data 

In compliance with realistic datasets, each observable in the 

simulation datasets was set to include values of different 

ranges since each observable measures different in-game 

activities. For example, observables could represent “how 

much time was spend on a task”, or “how many times an 

action was performed”. In this study, the simulated 

observables were encoded as “Obs1”, “Obs2”, … , “ObsX” 

(see Fig. 3) since they serve as non-contextualized numerical 

variables that refer to hypothetical competency constructs.  In 

Competency 1 

Facet 1 Facet 2 Facet 3 

Competency 2 

Facet 1 Facet 2 

Obs 1 Obs 2 Obs 3 Obs 4 Obs 5 Obs 6 Obs 7 

Obs 1 Obs 2 Obs 3 Obs 4 
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unidimensional constructs (meaning: with only one 

observable) it is not a big problem to cluster such data and 

assign labels to it (given that the data is already provided in an 

ascending order). However, in multi-dimensional constructs 

the data spreads in multi-dimensional space. In that case, 

unequal ranges of values (scales) are assigned to the 

observables that introduce undesirable weights to them 

(additional to any factor loadings).  Hence, assigning labels on 

clusters of data becomes troublesome. To resolve this issue a 

normalization step was applied prior to the clustering of the 

data so that the data of each observable scaled from 0 to 1.  

2) Clustering Approach for Labelling 

A clustering algorithm called k-means was used to label the 

data. The k-means algorithm partitions the data into k clusters, 

where each data point belongs to the cluster with the nearest 

mean (i.e. centroid) value. In this study, the k-means algorithm 

was optimized to cluster the data into three (k=3) clusters, in 

alignment to the 3 performance classes that are used by the 

ML algorithms. The Euclidean Square Distance Metric was 

used for the distance function, while the tolerance value for 

cluster changes between two iterations of the algorithm was 

set to 0.05. Also, the initial centroids of the clusters were 

randomly assigned.  

Although, k-means is able to group the data into separate 

clusters, it is not able to decide which of these clusters show 

higher or lower performance (i.e. to classify learners). In this 

particular case, this is primarily due to the fact that the data is 

spread in multi-dimensional space, which in turn leads to 

incomparable centroid values even after normalizing the data 

so that it ranges in a common scale across all observables. To 

order the clusters from Low to High and be able to classify the 

data accordingly, a weighted function was used to average the 

variable (observable) values within each cluster and hence 

created comparable centroid values between the clusters. 

Thus, Equation 1 was applied on each cluster: 

 

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑘 =  
𝑤1𝑣𝑎𝑟1+⋯+ 𝑤𝑥𝑣𝑎𝑟𝑛

𝑛
     (1) 

 

, where k is the cluster, centroidk is the centroid value of 

cluster k, n is the number of variables (observables), and wx 

are the weights/factor loadings (∑ 𝑤𝑥
𝑛
𝑥=1 =1). In this study we 

assumed equal weights for the variables, since we deal with 

simulation data and hypothetical generic constructs. 

F. Performance Measures 

Since, the purpose of this study is to compare the 

performances of the ML algorithms under different conditions; 

several ML performance measures [21] were used. We used 

the classification accuracy (CA), the kappa statistic (KS), the 

mean absolute error (MAE), the root mean squared error 

(RMSE), the relative absolute error (RAE), and the root 

relative squared error (RRSE). 

G. Statistical Analysis 

Various R scripts were developed to statistically analyze the 

performance of the ML algorithms in all test conditions. One 

of the most important aspects of this analysis was to examine 

if the performances of the ML algorithms were statistically 

stable within a certain level of confidence and thus ensure that 

the results of this study are reliable overall. In detail, an 

emphasis was given to the statistical stability of the two ML 

algorithms with respect to their mean CAs (due to it being the 

prevalent ML performance measure).  

Hence, within each condition we calculated the cumulative 

mean CAs for both ML algorithms after each run to examine 

whether or not they would start to converge and stabilize. 

Nonetheless, time limitations occurred due to the excessive 

amount of runs that had to be carried out. Hence, we decide to 

generate no more than 80 runs per examined condition. 

Consequently, the cumulative mean CAs of the two ML 

algorithms were calculated after each of the 80 runs per 

condition.  

In addition, a sequential stopping rule [22] was used in 

reverse to acquire the approximate confidence interval 

regarding the mean CA of the two ML algorithms. This 

stopping rule allows to determine how many simulation 

runs/datasets are needed (per condition) to achieve statistical 

stability according to a pre-defined precision requirement 

value (in this case the accuracy bound for the classifiers) and a 

confidence level value η. However, since the datasets assigned 

on each condition were already pre-defined at q=80, we 

directly applied the stopping rule only once per condition with 

a confidence coefficient value of η=0.99 (i.e. 99%). In this 

case, the precision requirement value was not required. We 

rather directly calculated the approximate confidence interval 

μ values for the mean CA values of the two ML algorithms. 

To do so, we first calculated the mean CA of the two ML 

classifiers, the mean variance of the datasets, and the quantile 

of the t-distribution.  

 Then, Equation 2 was used the approximate confidence 

interval μ for each test condition: 

 

(�̅�𝑞 − 𝑡𝜂,𝑞−1√
𝑆𝑞

2

𝑞
, �̅�𝑞 + 𝑡𝜂,𝑞−1√

𝑆𝑞
2

𝑞
)     (2) 

 

, where 𝑡𝜂,𝑞−1 is the (1+η)/2 quantile of the t-distribution with 

q-1 degrees of freedom, 𝑆𝑞
2 is the sample variance, and �̅�𝑞 is 

the mean CA of each ML algorithm after 80 runs.  

H. R Packages 

Several R packages were used within the R Scripts for 

generating the datasets and for the statistical analysis of the 

results. The most important ones are: FAdist [23] for the 

Weibull distribution, stats [24] for the other distributions, and 

nortest [25] for the Anderson-Darling normality test. Among 

other packages, xlsx [26], data.table [27], and ggplot2 [28] 

were also used. 

V. RESULTS 

This section presents the results for all the test conditions 

described above. It is important to note that all results 

presented here have been rounded (to either one or two 
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decimal points) to improve their readability. 

A. SA Robustness under Violations of Normality 

For 8 cases of normality violation a total number of 640 

spreadsheets were generated to store data relating to the two 

hypothetical competencies (80 per distribution type). 

Accordingly, 640 simulation runs were performed to obtain 

the performance of the two ML classifiers across 8 different 

conditions (each condition includes both competencies and 

both ML algorithms). 

An exemplary diagram showcasing results in one of the 

conditions is shown in Fig. 4. Similar results were found for 

all of the conditions. In all cases, the cumulative mean CAs for 

both ML algorithms started to converge and stabilize over 

simulation runs.  

Results regarding the mean performance (all measures 

included) of the two classifiers in the 8 different distribution-

related conditions for Competencies 1 and 2 can be found in 

Tables 1 and 2, respectively. The results show that the generic 

SA tool managed to reach high mean CAs when using either 

GNBN or C4.5 for the assigned ECD models. In particular, for 

Competency 1 mean CAs ranging from 92.5% to 94.5% were 

reached when using the GNBN and from 88.3% to 89.9% 

when using C4.5. For Competency 2 the mean CAs ranged 

from 95.2% to 96.8% for GNBN and from 91.1% to 94.3% for 

C4.5. Concerning the rest of the ML performance measures, 

high KSs and low error rates (MAE, RMSE, RAE, and RRSE) 

were reached, thus further supporting the efficiency of the 

classifiers and the effectiveness of the generic SA tool. 

In addition, an overview of the mean CA of the two ML 

algorithms for the two competencies can be found in Fig. 5. 

The error bars in this figure describe the related approximate 

CA confidence intervals that emerged from applying Equation 

2 and their location coordinates on the x-axis is given by the 

mean normality significance level (p value) intervals.  As can 

be seen in Fig. 5, the CA of the two ML algorithms remains 

relatively stable despite using data of different normality 

significance levels. A detailed description of the ML 

performance interval values (concerning the CA of the ML 

algorithms) for each condition can be found in Tables 3 and 4 

for the two competencies, respectively. These tables not only 

include the (lower and upper) bounds of the confidence 

intervals, but also the sample average �̅�𝑞 , and the mean 

variance 𝑆𝑞
2 of the sample in order to provide a better insight 

regarding the statistical stability of the results. 

B. Results at Smaller Sample Sizes 

The results of this section refer to the datasets of 10,000, 

1,000, and 100 samples (i.e. records), that each encompass 

conditions of both normality (𝑝 ∈ [1.0, 0.8)) and non-

normality (𝑝 ∈ [0.01, 0)), respectively. Similar to the cases 

described above, the cumulative mean CA of the two ML 

algorithms were calculated after each simulation run. After 

several runs the CA values of the two ML algorithms started 

to converge and stabilize.  

Regarding the mean performance measures of the two 

classifiers when dealing with datasets of different sample 

sizes, the results show that the generic SA tool is effective 

regardless of the normality significance level of the data. 

Results when using normally distributed simulation data are 

presented in Table 5 and 6. For Competency 1 the mean CA 

ranged from 92.1% to 94.9% when using the GNBN and from 

88.5% to 89.1% when using C4.5. For Competency 2 the CA 

ranged from 95.4% to 96.5% when using GNBN and from 

90.8% to 92.0% when using C4.5.  

Results from non-normal data distributions are presented in 

Table 7 and Table 8. The mean CA for Competency 1 ranged 

from 91.8% to 94.7% when using GNBN and from 88.0% to 

91.4% when using C4.5. For Competency 2 the mean CA 

spanned from 95.9% to 96.5% when using GNBN and from 

91.9% to 93.0% when using C4.5. Considering the rest of the 

ML performance measures, high KSs and low error rates 

(MAE, RMSE, RAE, and RRSE) were once again reached for 

all the tested conditions. 

The mean CAs (along with the confidence intervals) of the 

two ML algorithms for normally distributed data in three 

sample sizes are depicted in Fig. 6 for both competencies. 

Likewise for the non-normal conditions the results are 

illustrated in Fig. 7. Results from the statistical stability 

analysis in conditions of normality can be found in Tables 9 

and 10 for the two competencies respectively. Accordingly, 

results in conditions of non-normality for the two 

competencies can be found in Tables 11 and 12. 

 

 

Table 1. Mean values of various performance measures for 

Competency 1 from different data distribution-related conditions. 

GNBN 

p 
CA 

(%) 
KS MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

0.8-1.0 93.0 0.9 0.09 0.32 13.2 39.5 

0.6-0.8 93.8 0.9 0.08 0.28 11.6 35.0 

0.4-0.6 92.5 0.9 0.11 0.34 15.0 42.0 

0.2-0.4 94.5 0.9 0.07 0.26 10.4 32.4 

0.1-0.2 93.2 0.9 0.09 0.31 13.6 38.7 

Fig. 4. An exemplary plot depicting the cumulative mean CA values 

of the two classifiers over 80 simulation runs for one of the declared 

competencies in one of the test conditions. 
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0.05-0.1 94.5 0.9 0.07 0.26 10.6 31.9 

0.01-0.05 93.6 0.9 0.09 0.30 12.0 37.0 

0-0.01 93.0 0.9 0.10 0.33 14.2 41.8 

C4.5 

p 
CA 

(%) 
KS MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

0.8-1.0 88.8 0.8 0.15 0.45 21.5 55.1 

0.6-0.8 89.0 0.8 0.15 0.42 21.0 52.0 

0.4-0.6 89.4 0.8 0.14 0.42 19.9 52.0 

0.2-0.4 89.3 0.8 0.15 0.44 20.3 53.4 

0.1-0.2 89.9 0.8 0.14 0.40 19.4 49.8 

0.05-0.1 88.3 0.8 0.15 0.44 21.6 54.2 

0.01-0.05 89.1 0.8 0.15 0.43 20.5 52.3 

0-0.01 88.8 0.8 0.15 0.43 21.0 53.1 

Table 2. Mean values of various performance measures for 

Competency 2 from different data distribution-related conditions. 

GNBN 

p 
CA 

(%) 
KS MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

0.8-1.0 95.9 0.9 0.07 0.21 9.0 25.4 

0.6-0.8 96.8 0.9 0.05 0.18 7.6 23.0 

0.4-0.6 96.6 0.9 0.06 0.19 8.2 24.5 

0.2-0.4 95.2 0.9 0.07 0.22 10.6 28.0 

0.1-0.2 96.1 0.9 0.06 0.18 8.3 23.9 

0.05-0.1 96.5 0.9 0.05 0.17 7.6 21.5 

0.01-0.05 95.7 0.9 0.07 0.21 9.6 26.7 

0-0.01 95.9 0.9 0.07 0.21 9.9 27.7 

C4.5 

p 
CA 

(%) 
KS MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

0.8-1.0 91.9 0.9 0.11 0.32 14.8 39.5 

0.6-0.8 93.1 0.9 0.09 0.26 12.8 31.9 

0.4-0.6 93.0 0.9 0.09 0.26 13.1 33.2 

0.2-0.4 91.4 0.9 0.10 0.28 14.9 36.2 

0.1-0.2 92.1 0.9 0.10 0.26 14.0 33.3 

0.05-0.1 94.3 0.9 0.07 0.20 10.0 25.3 

0.01-0.05 91.1 0.9 0.11 0.30 15.9 37.8 

0-0.01 92.0 0.9 0.09 0.27 13.9 34.1 

 

 

Table 3. Statistical stability results (including CA confidence interval 

bounds, sample average �̅�𝒒, and sample mean variance 𝑺𝒒
𝟐) 

regarding the performance of GNBN and C4.5 for Competency 1. 

GNBN 

p 
Lower 

Bound 

Upper 

Bound 
�̅�𝑞 𝑆𝑞

2 

0.8-1.0 91.6 94.5 93.0 24.0 

0.6-0.8 92.3 95.2 93.8 24.2 

0.4-0.6 90.9 94.1 92.5 29.6 

0.2-0.4 93.2 95.8 94.5 19.9 

0.1-0.2 91.7 94.7 93.2 25.5 

0.05-0.1 93.1 95.9 94.5 23.7 

0.01-0.05 92.2 95.1 93.6 24.7 

0-0.01 91.5 94.5 93.0 26.0 

C4.5 

p 
Lower 

Bound 

Upper 

Bound 
�̅�𝑞 𝑆𝑞

2 

0.8-1.0 87.5 90.2 88.8 21.3 

0.6-0.8 87.4 90.7 89.0 32.0 

0.4-0.6 88.0 90.9 89.4 23.0 

0.2-0.4 87.9 90.8 89.3 22.7 

0.1-0.2 88.2 91.7 89.9 34.3 

0.05-0.1 86.7 89.7 88.3 24.1 

0.01-0.05 87.6 90.6 89.1 26.4 

0-0.01 87.2 90.4 88.8 28.1 

Table 4. Statistical stability results (including CA confidence interval 

bounds, sample average �̅�𝒒, and sample mean variance 𝑺𝒒
𝟐) 

regarding the performance of GNBN and C4.5 for Competency 1. 

GNBN 

p 
Lower 

Bound 

Upper 

Bound 
�̅�𝑞 𝑆𝑞

2 

0.8-1.0 94.3 97.4 95.9 27.6 

0.6-0.8 95.5 98.2 96.8 21.0 

0.4-0.6 95.2 98.0 96.6 23.2 

0.2-0.4 93.4 96.9 95.2 35.2 

0.1-0.2 94.6 97.6 96.1 24.9 

0.05-0.1 94.9 98.0 96.5 26.7 

0.01-0.05 94.2 97.2 95.7 25.3 

0-0.01 94.4 97.4 95.9 27.1 

C4.5 

p 
Lower 

Bound 

Upper 

Bound 
�̅�𝑞 𝑆𝑞

2 

0.8-1.0 90.1 93,8 91.9 39.2 

0.6-0.8 90.9 95.2 93.1 53.5 

0.4-0.6 90.9 95.2 93.0 54.1 

0.2-0.4 89.0 93.8 91.4 64.7 

0.1-0.2 89.9 94.4 92.1 57.8 

0.05-0.1 92.3 96.3 94.3 47.5 

0.01-0.05 88.9 93.3 91.1 55.2 

0-0.01 89.9 94.1 92.0 49.9 
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Table 5. Mean values of various performance measures for 

Competency 1 for different sample sizes of normally distributed data 

(𝒑 ∈ [𝟏. 𝟎, 𝟎. 𝟖)). 

GNBN 

Sample 

size 

CA 

(%) 
KS MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

10,000 93.0 0.9 0.09 0.32 13.2 39.5 

1,000 94.9 0.9 0.07 0.24 9.5 29.2 

100 92.1 0.9 0.11 0.31 15.8 39.5 

C4.5 

Sample 

size 

CA 

(%) 
KS MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

10,000 88.8 0.8 0.15 0.45 21.5 55.1 

1,000 88.5 0.8 0.15 0.42 21.8 52.4 

100 89.1 0.8 0.14 0.39 20.1 48.2 

Table 6. Mean values of various performance measures for 

Competency 2 for different sample sizes of normally distributed data 

(𝒑 ∈ [𝟏. 𝟎, 𝟎. 𝟖)). 

GNBN 

Sample 

size 

CA 

(%) 
KS MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

10,000 95.9 0.9 0.07 0.21 9.0 25.4 

1,000 96.5 0.9 0.05 0.17 7.7 21.4 

100 95.4 0.9 0.07 0.19 10.0 25.6 

C4.5 

Sample 

size 

CA 

(%) 
KS MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

10,000 91.9 0.9 0.11 0.32 14.8 39.5 

1,000 92.0 0.9 0.10 0.28 14.5 36.0 

100 90.8 0.8 0.11 0.29 16.3 37.2 

Fig. 5. Mean CA values and confidence intervals of the two ML algorithms (GNBN left, C4.5 right) for 

Competency 1 (top) and Competency 2 (bottom) respectively. 
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Table 7. Mean values of various performance measures for 

Competency 1 when using different sample sizes of non-normally 

distributed data (𝒑 ∈ [𝟎. 𝟎𝟏, 𝟎)). 

GNBN 

Sample 

size 

CA 

(%) 
KS MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

10,000 93.0 0.9 0.10 0.33 14.2 41.8 

1,000 94.7 0.9 0.07 0.26 10.7 32.8 

100 91.8 0.9 0.11 0.31 16.1 39.7 

C4.5 

Sample 

size 

CA 

(%) 
KS MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

10,000 88.8 0.8 0.15 0.43 21.0 53.1 

1,000 88.0 0.8 0.15 0.43 21.7 52.7 

100 91.4 0.9 0.12 0.34 27.5 42.2 

Table 8. Mean values of various performance measures for 

Competency 2 when using different sample sizes of non-normally 

distributed data (𝒑 ∈ [𝟎. 𝟎𝟏, 𝟎)). 

GNBN 

Sample 

size 

CA 

(%) 
KS MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

10,000 95.9 0.9 0.07 0.21 9.9 27.7 

1,000 96.2 0.9 0.06 0.18 8.4 23.2 

100 96.5 0.9 0.05 0.14 7.0 18.3 

C4.5 

Sample 

size 

CA 

(%) 
KS MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

10,000 92.0 0.9 0.09 0.27 13.9 34.1 

1,000 91.9 0.9 0.10 0.29 14.8 37.4 

100 93.0 0.9 0.08 0.23 13.1 30.6 

Table 9. Statistical stability results (including CA confidence interval 

bounds, sample average �̅�𝒒, and sample mean variance 𝑺𝒒
𝟐) 

regarding the performance of GNBN and C4.5 for Competency 1 for 

different sample sizes of normally distributed data (𝒑 ∈ [𝟏. 𝟎, 𝟎. 𝟖)). 

GNBN 

Sample 

size 

Lower 

Bound 

Upper 

Bound 
�̅�𝑞 𝑆𝑞

2 

10,000 91.6 94.5 93.0 24.0 

1,000 93.4 96.3 94.9 23.9 

100 89.8 94.3 92.1 58.0 

C4.5 

Sample 

size 

Lower 

Bound 

Upper 

Bound 
�̅�𝑞 𝑆𝑞

2 

10,000 87.5 90.2 88.8 21.3 

1,000 86.6 90.4 88.5 42.5 

100 86.9 91.3 89.1 54.5 

 

 

 

 

 

 

 

Table 10. Statistical stability results (including CA confidence 

interval bounds, sample average �̅�𝒒, and sample mean variance 𝑺𝒒
𝟐) 

regarding the performance of GNBN and C4.5 for Competency 2 for 

different sample sizes of normally distributed data (𝒑 ∈ [𝟏. 𝟎, 𝟎. 𝟖)). 

GNBN 

Sample 

size 

Lower 

Bound 

Upper 

Bound 
�̅�𝑞 𝑆𝑞

2 

10,000 94.3 97.4 95.9 27.6 

1,000 94.9 98.1 96.5 30.6 

100 93.4 97.5 95.4 46.6 

C4.5 

Sample 

size 

Lower 

Bound 

Upper 

Bound 
�̅�𝑞 𝑆𝑞

2 

10,000 90.1 93.8 91.9 39.2 

1,000 89.7 94.4 92.0 63.0 

100 87.9 93.6 90.8 92.6 

Table 11. Statistical stability results (including CA confidence 

interval bounds, sample average �̅�𝒒, and sample mean variance 𝑺𝒒
𝟐) 

regarding the performance of GNBN and C4.5 for Competency 1 for 

different sample sizes of non-normally distributed data (𝒑 ∈
[𝟎. 𝟎𝟏, 𝟎)). 

GNBN 

Sample 

size 

Lower 

Bound 

Upper 

Bound 
�̅�𝑞 𝑆𝑞

2 

10,000 91.5 94.5 93.0 26.0 

1,000 93.3 96.0 94.7 21.0 

100 89.3 94.4 91.8 74.6 

C4.5 

Sample 

size 

Lower 

Bound 

Upper 

Bound 
�̅�𝑞 𝑆𝑞

2 

10,000 87.2 90.4 88.8 28.1 

1,000 86.3 89.7 88.0 32.0 

100 89.1 93.7 91.4 58.3 

Table 12. Statistical stability results (including CA confidence 

interval bounds, sample average �̅�𝒒, and sample mean variance 𝑺𝒒
𝟐) 

regarding the performance of GNBN and C4.5 for Competency 2 for 

different sample sizes of non-normally distributed data (𝒑 ∈
[𝟎. 𝟎𝟏, 𝟎)). 

GNBN 

Sample 

size 

Lower 

Bound 

Upper 

Bound 
�̅�𝑞 𝑆𝑞

2 

10,000 94.4 97.4 95.9 27.1 

1,000 94.5 97.9 96.2 33.1 

100 94.5 98.5 96.5 44.6 

C4.5 

Sample 

size 

Lower 

Bound 

Upper 

Bound 
�̅�𝑞 𝑆𝑞

2 

10,000 89.9 94.1 92.0 49.9 

1,000 90.0 93.9 91.9 44.5 

100 90.4 95.6 93.0 76.6 
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VI. DISCUSSION 

Four research questions were posed in this study which 

required the testing of several conditions in order to provide 

an answer for them. Overall, the results show that the 

performance of both ML algorithms was high in all the 

conditions it was tested against, with a confidence of 99% on 

the results.  

In specific, concerning the research question of how robust 

the SA methodology is when handling datasets of different 

normality significance levels; it was shown that the SA is 

highly robust even in conditions of extreme non-normality. In 

particular, the generic SA tool managed to reach high mean 

CAs (>88.3%), high mean KSs (>0.8), and low error rates 

(MAE, RMSE, RAE, and RRSE) when using both GNBN and 

C4.5 for the assigned ECD models in 8 different test 

conditions.  

Regarding the research question of how robust the SA 

methodology is when handling datasets of different sample 

sizes; it was shown that SA is highly robust even when using 

small sample sizes such as 1,000 or 100 samples. That is, 

regardless of the normality significance level of these datasets. 

Notably, the generic SA tool managed to reach high mean 

CAs (>88.0%), high mean KSs (>0.8), and low error rates 

(MAE, RMSE, RAE, and RRSE) when using both GNBN and 

C4.5 for the assigned ECD models in 4 different test 

conditions. 

The overall robustness of the SA methodology was 

examined when using different ML algorithms for continuous 

numerical datasets. For this reason, two ML algorithms were 

used in study; that is GNBN and C4.5. While both proved to 

be efficient, still it was shown that a parametric ML algorithm 

Fig. 6. Mean CA values and confidence intervals of the two ML algorithms (GNBN left, C4.5 right) for Competency 1 

(top) and Competency 2 (bottom) respectively for different sample sizes of normally distributed simulation data 𝒑 ∈
[𝟏. 𝟎, 𝟎. 𝟖). 
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such as GNBN can perform just as well as or even better than 

a non-parametric ML algorithm such as C4.5, despite violating 

the normality assumption. However, C4.5 can be viewed as a 

better overall solution for SA as it can also handle discrete 

numerical data. Of course, other ML algorithms (such as 

Support Vector Machines and Neural Networks) could also be 

put to the test in the future. 

Moreover, the SA methodology has proven to be robust 

when dealing with different ECD models. We observed that 

the more complex the constructs are, the less accurate the ML 

algorithms become. Obviously, more constructs of different 

shapes and sizes could be examined to get a better insight 

regarding the extent of SA’s robustness in more complex 

cases. Nevertheless, we conclude that cases of elementary 

competency constructs, such as the ones that were used here, 

can be already handled efficiently by the generic SA tool, even 

simultaneously. 

 

VII. CONCLUSION 

The aim of this study has been to examine the robustness of 

SA against various conditions by using a generic SA software 

tool. The results have shown that SA is a robust methodology 

capable of handling all test conditions within the scope of this 

study with a high level of confidence. In specific, SA is 

capable of handling continuous numerical datasets of different 

distribution types and sample sizes, while utilizing different 

ML algorithms, disregard functioning under different 

competency construct configurations.  

 In addition, the generic SA software tool used in this 

study proved to be capable of executing all the core 

functionalities that were needed to examine the posed research 

questions despite being in an early version. It is important to 

note here that serious games can be applied to various 

Fig. 7. Mean CA values and confidence intervals of the two ML algorithms (GNBN left, C4.5 right) for Competency 1 

(top) and Competency 2 (bottom) respectively for different sample sizes of non-normally distributed simulation data 

(p∈[0.01,0)). 
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domains (e.g. education, marketing, etc.). Nonetheless, certain 

domains (e.g. health) are more critical than others and 

therefore software tools, such as the one presented in this 

study, should be thoroughly examined for their validity before 

being applied in practice.  Therefore, the next steps for 

realizing a more complete and validated version of the SA tool 

is to conduct empirical studies with real-world data. To 

achieve this, the outcomes of validated (external or internal to 

the game) measurements, such questionnaires, can already be 

used with the generic SA software tool to validate its 

classification outputs. So far, the software tool has been 

validated in two separate empirical studies [29, 30].  

Furthermore, to enhance the usability of the software tool we 

added a user interface layer, including a software wizard, help 

widgets, and other support functions/features to re-assure to 

provides a well-tailored experience to its user and allow the 

easier application of SA.To summarize, it is useful to discuss 

certain implications that rise from the use of the generic SA 

tool. As previously mentioned, the software tool allows the 

use of numerical data to perform assessments in serious 

games. However, later versions of the tool could include other 

types of data as well (e.g. nominal data) in order to enhance its 

usefulness. Nonetheless, this tool is a novel solution for 

assessing a broad range of competencies (e.g. 21st century 

skills, soft skills, digital skills, etc.) beyond the tight scope of 

the learning objectives of a traditional classroom. 

Furthermore, there are ethical/ privacy/data management 

implications. Using covert (stealth) assessment methodologies 

and tools does not mean that the subject is unaware of being 

monitored or assessed. Similar to any assessment, covert 

assessments can and should only be applied when it is fairly 

and fully communicated to the subject and the subject gives 

consent. Moreover, legal procedures must hold for securely 

storing the data and clarifying what it is exclusively used for 

and what will happen with the data and outcomes after its use 

(e.g. erasing the data). 
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