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Abstract 

This paper explores the cybernetic regulation of complex human learning and teaching. It provides a theoretical 

description of the arrangement of adaptive, machine-generated learner feedback which relies on cybernetic 

principles. Cybernetics – today often referred to as control theory, or feedback control theory - involves the 

incorporation of self-establishing feedback mechanisms for optimal control in complex systems. Although 

feedback is considered a key element of any learning process, the arrangement of feedback by teachers and 

educators is under pressure because of the ever-growing complexity of learning environments which is being 

reinforced by open, online learning technologies and topical models of learning (competence learning, 

experiential learning, situated cognition, serious gaming). This paper explores how cybernetic principles could 

be implemented in complex learning environments, e.g. serious games, for the arrangement of self-regulating 

feedback loops for learners. The approach is based on a quantitative description of learning activities and 

learning performances. For the presentation of the feedback, a feedback decision procedure is suggested which is 

to be linked with pedagogical theories and assessment models. The proposed cybernetic approach is elucidated 

with a theoretical example. The paper provides a proof of principle and gives suggestions for further 

development.  
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1. Introduction 
This paper investigates the applicability of cybernetic principles for providing learner feedback in complex 

online learning environments. Cybernetics refers to a systems theoretical approach to keeping a complex system 

on target (Wiener 1948). The increasing complexity of online learning environments, which are readily 

associated with complex skills training, competency learning and game-based learning and the associated 

freedom of movement and ill-defined problems, hampers the provision of appropriate guidance and feedback to 

learners . Hence, the effectiveness and efficiency of learning are under threat. This calls for new approaches to 

supporting learners and keeping them on target.  

The complexity of learning environments is amplified by new enabling technologies and new pedagogical 

insights. Contemporary pedagogies, e.g. constructivism, experiential learning (Kolb 1984) and situated cognition 

(Brown et al. 1986), stress the importance of active learner involvement. They all start from the premise that 



 

 

learning is greatly fostered by the experiences we have in the world that surrounds us. This points at dynamic 

and ill-structured learning environments with lots of unstructured content and occurrences rather than well-

established drills, instructions or tutorials (Westera et al. 2008). Also competences needed for the information 

age, which include information skills, self-regulation, networked cooperation, problem solving strategies and 

critical thinking, suggest an inherent richness and complexity of the learning environment. Serious games are a 

topical example of this trend, while these involve complex, multidimensional systems, which incorporate many 

aspects of real world complexity. Appropriate mechanisms have to be included for the arrangement of learner 

guidance and feedback: indeed, learners need to be kept on the right track and should be helped to avoid 

irrelevant and time-wasting activities. But the complexity of current learning environments systems, particularly 

online environments, produces severe barriers for this. In school practice teachers decide on when and how to 

give guidance and feedback to students (Hattie and Timperley 2007). In complex online learning environments 

such as games, however, teachers will not be able to tune these to the specific needs of the learners, unless they 

would spend all their time for tracking, analysing and understanding the whole game play and history of each 

individual learner. Also, much of the teaching expertise about when and how to support learners is implicit or 

hidden, which fairly matches the widespread idea that teaching is an art rather than a science. In recent years the 

learners themselves are increasingly assumed to be responsible for their own learning. Theories of self-regulation 

and self-determination (Zimmermann and Schunk 1989; Ryan and Deci 2000) are inherently based on the idea of 

continuous control loops that learners apply in their own learning. These are actually cybernetic approaches, be it 

that they are mainly qualitative in kind and focused on the mental processes of the learner rather than 

incorporating the systemic dimensions of the learning context. In this paper this context will be included as such, 

since the context of learning is widely considered the main determinant for effective learning (Dewey 1938; 

Roth 1995; Brown et al. 1989). Various approaches for creating responsive, adaptive systems are available, for 

instance, adaptive hypermedia approaches (Brusilovsky 2001), rule-editing approaches, standards-based 

instructional design (e.g. SCORM and IMS Learning Design) and semantic web approaches, but these all suffer 

from complexity of design (Westera et al. 2008). 

 

Linking education with cybernetics is not a new idea (cf. Smith and Smith 1966), but there are no examples 

explicitly referring to feedback in complex or game-based learning environments. Kaburlasosa et al. (2009) 

applied cybernetic methods for the arrangement of adaptive assessments. However, these were based on 

Bayesian statistics involving a wide population of learners rather than single learner interactions. It is the 

challenge of the learning sciences to develop new scientific approaches for the improvement of learning and 

teaching, and dismantle the mystifying parts of it. So does this paper by exploring the opportunities of cybernetic 

theory for combining teaching, learning and the systemic properties of learning context.  

 

The main aim of this paper is to elaborate the idea of the cybernetic generation of learner feedback in complex 

environments and provide a proof of principle for it. We will briefly outline the basic principles of cybernetics 

and elaborate the arguments for linking cybernetic theory with the system of human learning. We will then 

provide the quantitative description of cybernetics and explain how cybernetics can be implemented in complex 

learning environments. The approach is elaborated and illustrated with a serious gaming example. In conclusion 

we evaluate the outcomes of this analysis and suggest relevant research topics to be tackled. 

 

2. Cybernetic principles 
Cybernetics has been defined by its founder Norbert Wiener (Wiener 1948) as “the science of communication 

and control in animal and machine”. Cybernetics – today often referred to as control theory, or feedback control 

theory - involves the incorporation of self-establishing feedback mechanisms for optimal control in complex 

systems. The cybernetic approach can be illustrated by a simple and well-known example: cruise control. 

Suppose that we want to drive our car at constant speed, irrespective disturbing effects of wind changes, ascends 

or descents, bumpy roads, combustion temperature fluctuations. To achieve this we actually don’t necessarily 

need detailed Newtonian calculations that describe the effects of wind force, rolling resistance and gravity on car 

speed. Instead, we carefully observe the speedometer and adjust our speed to the required speed simply by 

pressing or lifting the accelerator pedal. This approach reflects a cybernetic control loop which is depicted in 

generalised form in Figure 1. 

 



 

 

 
Figure 1. The principle of cybernetics: closed-loop feedback control. 

 

 

The system S is our car which is driving under unclear conditions indicated by the disturbances which may affect 

the speed of the car. The output data of the system (car speed) is measured through a sensor (the speedometer), 

and is compared with the internal reference value (desired speed). The difference between the measured and 

desired speed is the input for a controller (the accelerator pedal) which counteracts the difference by adjusting 

motor power. When the speed is too high, we simply lift the pedal to reduce the difference; when the speed is too 

low we will press the pedal. Such regulation mechanism is essentially error driven, with the ultimate goal of 

achieving stable zero error, and robustness under unknown dynamics, disturbances and uncertainty of conditions. 

So, the cybernetic feedback control loop of figure 1 establishes the self-regulating capabilities of the system, 

without the need for detailed description of the system’s internal structure and variables and without the need to 

understand and incorporate the mechanisms of disturbances. Cybernetic principles have been widely and 

successfully applied in a variety of systems like chemical plants, power plants or electronic circuits for the 

purpose of system optimisation and stability. Such complex systems are inherently difficult to describe, to 

understand or to forecast, but their performance can be greatly enhanced when we adopt a cybernetic 

perspective. Many complex dynamic systems (viz. a system that can be described mathematically by multiple 

variables that change over time), ranging from natural eco-systems to the system of blood circulation or the 

human immune system, can be accurately described and understood by cybernetic models.  

 

3. The rationale of using cybernetics in education 
There are various considerations in support of connecting cybernetics with (complex) learning. The arguments 

go beyond the concept of learning itself, while they also reflect visions of human functioning at large and the 

context of operation.  

 

3.1 Human behaviour as the result of control loops 

Some theories claim that all human behaviour is the result of internal control loops: Perceptual Control Theory 

(Powers 1973) and Choice Control Theory (Glasser 1986) claim that human behaviour is not caused by outside 

stimuli, but is the effect of keeping internal variables within survivable limits of internal references values. 

Living beings are thus considered to act upon their environment with the purpose of controlling perceptual inputs 

and minimise the differences with internal standards. The simple act of bringing a glass of water to our mouth 

without spoiling, under whatever disturbing conditions (wind, or travelling on a bumpy road) is a highly adaptive 

operation, which can only be achieved by frequent control loop iterations. The theory is also framed as a theory 

of motivation, since it states that behaviour is the result of trying to satisfy internal goals, for instance survival, 

love and power. All human behaviour is thus interpreted as the result of internal feedback control loops. 



 

 

 

3.2 Human-computer interaction as a control process 

The interaction between human individuals and a computer program can be well understood by a cybernetic 

control loop, which continually provides feedback for adjusting the action. The human actor may have certain 

intentions when performing a action; the environment responds by changing its state. This, in turn, is evaluated 

by the user against some internal standard (intention) which may urge him or her to the next action. This highly 

cybernetic view is also reflected at a more general level in the execution-evaluation cycle of Norman’s 

interaction theory (Norman 1988). Note that this interpretation of human-computer interaction is completely 

different from the single cause-and-effect relationship of actions. The latter is attractive for its simplicity, but 

also naïve and improper. Claiming that a player’s action in a game is the cause of some effect in the game is not 

necessarily wrong, but it is only half the story. The player’s action cannot be evaluated in isolation. Indeed, any 

action will be part of a complex, cohesive sequence of mutual interactions between the player and the game, 

which blurs the ideas of cause and effect. The player acts on the environment inasmuch as the environment acts 

on the player. The player itself cannot be isolated from the game, but is actually part of the game. Players do not 

act on the game, but act in the game: the player is part of the environment and adjusts its actions by means of a 

cybernetic feedback loop. 

 

3.3 The control loop of learning 

Feedback is also considered a key element of any learning process (Mory 2004; Hatty and Timperley 2007). 

Contemporary views on learning, like constructivism, experiential learning and situated cognition, advocate the 

active involvement of learners in rich and complex learning environments that mimic or model part of the real 

world (serious games are a case in point). Such learning by experience involves a process of continued 

confrontation with the complexities of the environment, and the continued reconsideration of the decisions taken 

for achievement of learning goals. The impact of the learners’ actions provide a natural feedback mechanism that 

may urge the learners to re-adjust and improve their actions and to develop alternative strategies for achieving 

their goals. Learning can thus be considered a continued self-regulation process which uses “error reduction” via 

feedback. The learning cycle can easily be mapped onto the cybernetic system of figure 1: the system is the 

environment where the learners carry out their learning tasks. The system output reflects the effects of the 

learning activities, which are registered by a sensing agent and assessed by comparing the signal with the 

reference output (which is somehow linked with the preset learning goal). The difference may reinforce the 

learners’ approaches or may hint for the adjustment of activities or strategies. Indeed, learning itself is an 

inherently cybernetic process. 

 

3.4 Increased complexity of learning environments  

Since the 1980s computers have been used in education and training. Initially, this so-called courseware 

comprised programmed instruction and simple repetitive, quiz-like programmes for drill and practice exercises. 

Also educational games and simulations became available, be it that initially their user interfaces were still in 

text mode. Gradually courseware became more complex and supported multimedia presentation (graphics, sound 

and video). CD-rom and DVD became the main distribution carriers. The emergence of the internet enabled 

network options like multi-user games, user communities and collaborative computer-supported learning. It can 

be observed (Aldrich 2005) that digital learning environments and the associated learning tasks tend to become 

increasingly complex. Contemporary pedagogies call for authentic learning environments that provide safe 

experimentation with real-life tasks (Brown et al. 1989; Newmann et al. 1996; Gobert and Palant 2004; Jonassen 

2004), as is the case in serious games, for instance. As a consequence, learners will probably not be able to 

control their learning to full extent, and will often need a hint or instruction for appropriate continuation. These 

hints may be provided by a teacher or a built-in facility, but the problem is to find the right metrics for 

generating advice. It is quite likely that teachers don’t know how to continue either, due to the game’s 

complexity. It doesn’t make much sense to provide support that is no more than an improvised wild guess. So, 

the challenge is to define mechanisms that support the re-adjustments of learners’ behaviours. This is of special 

importance because the growing proportion of e-learning in education and training that goes with restricted 

access to teachers. The top-down design of learner support mechanisms in these complex environments – say a 

serious game - is very intricate, because of the almost indefinitely large size of the system’s state space (which is 

the multi-dimension space spanned by the values of all state variable, over time). It is very difficult, if not 

impossible to completely model the diverse student behaviours and the responses of the game environment in 

such a way that specific support interventions can be inferred. Alternatively, it seems to make sense to consider 

the complex environment as a “learning ecology”, which only function is the development and survival of useful 



 

 

knowledge and useful behaviours. Indeed, such learning ecology has many things in common with complex 

dynamic systems like populations of living creatures, a chemical plant or even a match of football, which all rely 

on cybernetic principles. Essentially, cybernetic theory requires that system outputs are evaluated against certain 

internal (or external) standards in order to apply the corrective feedback. Indeed, learning is a mostly and pre-

eminently a goal-driven activity, motivated by learning goals, by learning content, or by reports to deliver. This 

complies with intentions and internal standards required for measuring progress or deviations from the standards 

set. As a (sub)system, the learning environment is supposed to help produce the right learning outcomes in an 

effective way in spite of unknown disturbances and without any instabilities or system failures. Hence, 

cybernetics is a promising candidate to explore. 

 

4. Quantitative description of cybernetic theory  
Cybernetics provides a systematic, theoretical approach for the analysis and design of complex systems by 

regulating system responses through closed-loop feedback control. The starting point of cybernetics is that 

complex systems do not possess the specific intelligence to respond to a variety of different stimuli and 

conditions, but instead respond by maintaining a subset of internal variables also called control variables within 

critical or often “survivable” limits from fixed reference values. To this end, it is important to have sensors and 

indicators available for the monitoring of the system’s relevant outputs, and, likewise, to have controllers for 

making adjustments to the inputs. The core idea of cybernetics is a negative system feedback loop as displayed 

in its classical form in figure 2 (similar to figure 1, but variables indicated). 

 

 
Figure 2. Cybernetic loop with variables indicated. 

 

 

Here S is the system that covers the learning process. It is perturbed by unknown dynamic disturbances, which 

may have external or internal origin. The output of the system S at time t is denoted y(t), while y’(t) is the 

observed output that is measured by the output sensor, r(t) is the reference value indicating the desired output, 

e(t)=r(t)-y’(t) is the error function, u(t) is the input function of the system as produced by the controller C. In 

case of multiple inputs and multiple outputs these variables represent vectors rather than scalars and their mutual 

relationships are described by matrices rather than single coefficients. For reasons of simplicity it is assumed 

here that the sensor produces the exact and noiseless value of the output, so  
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When C and S are the transfer functions of the controller and the system, respectively, it follows that the 

system’s closed loop transfer function H reads (Leigh 2004): 
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where s is the complex frequency and y(s) and r(s) are the Laplace transforms of y(t) and r(t), respectively. The 

Laplace transform is a mathematical procedure that transforms an equation from the time domain (in which 

inputs and outputs are functions of time) into the frequency domain (where the same inputs and outputs are 

functions of complex angular frequency, in radians per unit time). In many cases the Laplace transform 

simplifies the mathematics and eases the finding of valid solutions to the equations, while maintaining the full 

functional qualities of the original time-based equation set.  

The main idea of cybernetics is that when we have sufficient information about the system transfer function S, 

we need to define an appropriate control function C for optimal performance to achieve perfect and stable 

transfer of H=1, viz. the output y(t) perfectly matches the reference value r(t). When the system is 

malfunctioning, the control function C should compensate for this by reducing the error e(t). Note, however, that 

by the nature of error reduction, the control action is always lagging behind the system output: indeed, an error 

can only be compensated for after its appearance. As a consequence unwanted time effects in system 

performance may occur like oscillation, drift, cumulative delays, chaos, explosion and breakdown. For optimal 

functioning the control function should not just be a function of the present output y(t), but also take into account 

system history by incorporating previous system outputs y(t’) and previous system inputs u(t’), with t’<t.  

 

In a variety of technical applications generic solutions for the controller function have been developed. The 

Proportional-Integral-Differential controller algorithm (PID) is built on 3 separate components, which appear on 

the right side of equation (3): 
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The first term on the right hand side represents proportional control: the corrective input is proportional to the 

current error e(t). Its response is fully determined by the current error and aims to directly compensate for it. The 

second term reflects integral control by taking into account the history and duration of the error. The third term 

represents differential control, which reduces transient overshoot by accounting for the rate of change of the 

error. Transformation of equation (3) to the frequency domain produces the PID controller transfer function C: 
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The PID controller function is well documented and instrumented, but still requires careful tuning of its 

parameters Kp, Ki and Kd to avoid system instability (Leigh 2004; Ziegler and Nichols 1942). 

 

5. Applying cybernetics in an educational context 
Applying cybernetics to the process of learning is equivalent with arranging an effective controller function. In 

most cases, however, we have to deal with two separate controller functions exercised by: 1) an educational 

agent (e.g. a teacher, an instructor or an instructional system such as a book or a serious game) who aims to 

guide and support the learner toward predefined learning goals, and 2) the learner as an autonomous individual 

who exerts self-regulation in order to satisfy his or her personal needs. This means that the cybernetic system is 

composed of two interlinked cybernetic cycles (cf. figure 3).  

 

 



 

 

 
 

Figure 3. The two cybernetic cycles required for the learning system.  

 

For the sake of convenience these are labelled as 1) the educational intervention cycle, which refers to teaching 

agency, and 2) the learning cycle, which is controlled by the learning individual.  

 

The educational intervention cycle reflects the observations, considerations and actions of teachers or tutors to 

guide and support the learner toward the learning goals. In general the system S, e.g. containing the learning 

context, including materials, the learner and fellow-learners, will be described by multiple dimensions, which 

means that u(t), y(t), y’(t) and r(t) are essentially vectors. The output vector y(t) and the measured sensor outputs 

y’(t) are supposed to cover the observable effects of these actions, viz. the various dimensions of the learner’s 

performance (corresponding with learning outcomes) or manifest effects in the game. The reference values r(t) – 

also a vector - reflect the pursued learning performances, which act as the standards for system control. 

Deviations between the observe values y’(t) and the reference value r(t) indicate suboptimal learning 

performance and call for adjustment of the system input vector u(t), which adapts the conditions for learning.  

 

The learning cycle reflects the personal nature of the learning process. It comprises the learner as the actor 

performing learning activities in the learning environment S, but also the learner as an observer of self-

performance, the learner as a self-comparator (evaluation self-performance against personal goals and intentions) 

and the learner as a self-controller (adjusting behaviours on the basis of controller inputs). From figure 3 it can 

also be read that on the one hand the learner is an intrinsic and active part of the system S and its associated 

learning activities, while on the other hand the learner acts as a self-observer, self-evaluator and self-controller, 

who is (by its nature and role) located outside this system. This dual role of the learning individual has been 

made quite explicit in theories of metacognition, reflection and self-regulation (Butler and Winne 1995). Note 

that exactly at the meta-level interface the teaching cycle and the learning cycle are interconnected. The system 

controller C (the teaching agency) may also directly address the self-controlling learner and give direct 

instruction at a meta-level to the learner.  

In the next section we will explain how the cybernetic approach is applied to an educational setting, say a serious 

game.  

 

6. System elaboration 
We will explain the various system components of figure 3 in more detail. For the purpose of illustration we 

refer to an exemplary context that uses a (fictitious) serious game. Consider a serious game, for instance a 

business game that puts the learner in the position of a business manager running a plant. Assume that the game 



 

 

is a multi-player role-play game: fellow players have adopted relevant roles either as business staff, customers, 

suppliers or competitors in the same market. Generally in this type of games, players learn to optimise their 

business performance under the constraints of imperfect and/or asymmetric information. Also the game could 

include a real-time simulation model of the production process, generating the dynamics of supplies, orders, 

processing capacity, staff, sales and so on.  

 

The system S  

The main system S represents the full learning context, including both the player and all game objects and other 

game attributes (e.g. game rules, game processes, tools, aids, simulation engines). Game play, which is 

equivalent with learning activity, reflects the interaction between the player and the other system components. In 

the game the player adopts the role of business manager and aims to run the business in a favourable way. In 

case of a multiplayer game, then fellow-players adopting similar or complementary roles are part of the system 

as well (cf. figure 3). Player actions may include buying supplies, hiring staff, designing a marketing plan, 

buying advertisements, tuning the business process logistics, negotiating with fellow players, deciding about 

investments, reorganising business, and many more.   

 

Disturbances 

Many games use random generators for triggering unexpected, critical events. Likewise, fellow players in the 

game may behave in highly unpredictable ways and thus cause unforeseen system disturbances. In principle 

these two factors are system-internal disturbances, rather than external noise. In addition, a wide range of 

external factors (e.g. room temperature, internet connection speed, time, player’s mood or fatigue, interrupting 

phone calls) may influence the system. 

 

System output y(t) 

The output variables y(t) reflect the relevant observable parameters of the system S. These may include content-

related indicators such as investments made, stock volumes, sales, vacancies, energy waste, new contracts, 

customer satisfaction rates etcetera. But output may also include the learner’s behavioural patterns that could be 

easily tracked by game engines, such as time spent to certain activities, number of documents consulted, peer-

assessed scores of reflection reports, visits to different game locations and so on. A main challenge is to assess 

observed activities in terms of learning gains. For the assessment in game-based learning Shute et al. (2009) 

propose a combination of Evidence-Centered Assessment (ECD: Mislevy et al. 2003) and Bayesian score models 

(e.g. Pearl 1998). Its ingredients are 1) a competency model, which describes the competencies, skills and 

knowledge of the variables to be assessed, 2) a task model, which describes features of situations that will be 

used to elicit performance, 3) an evidence model, which explains how aggregated interactions and behaviours 

(observables in the task model) provide evidence to performances, and 4) the learner model, which expresses the 

learner’s scores of the assessment variables, indicating to what extent the competencies, skills and knowledge are 

mastered (Shute 2009). Note that for the sake of simplicity we assume that no observational losses occur, which 

means that y(t)=y’(t). 

 

Reference standards r(t) 

The reference values r(t) reflect the anticipated growth of the system S over time. It covers the same parameters 

as y(t) and thus may include both the game’s business performances and behavioural metrics of the learner. This 

is where pursued competences or learning goals come into play. The references r(t) not just indicate final goals 

but also cover the time-dependent trajectory toward these goals. They are thus linked with the intended, most 

favourable learning and development scenario. Reference criteria to be met will be closely linked with the game 

play and may be based on population metrics derived from previous runs or on any other available theoretical, 

logical, social, historical or formal standards. The reference values may in principle be different for different 

learners because of personal characteristics, personal goals or personalised preferences, and may change over 

various episodes of learning.  

 

Comparator 

Deviations of y’(t) from the reference value r(t) indicate suboptimal performance and call for adjustment of the 

system input vector u(t). For instance, if a player requires too much time to complete a task (e.g. defining mile 

stones or solving a delivery problem) as compared with the standard scores a deviation is reported to the 

controller, which prepares a system intervention. 

 

Controller 
In turn, the controlling system C makes adjustments to system inputs u(t), which are aimed at influencing the 

system in the most favourable way. Here several options are possible. First, the controller may directly intervene 

in the system’s process by changing the process parameters. For instance, if the business is about to go bankrupt, 



 

 

the simulation parameters may be set to reduce the financial load by raising sales figures or sales margins, or by 

reducing costs of supplies or personnel, other reveal relevant clues in the game that may guide the learner toward 

better performance. These interventions would all be part of the game play and can in many cases be regarded 

natural feedback (Dewey 1938), which is feedback that is reflected in observable changes of the environment. 

Second, the controller could directly address the learner and provide feedback, hints or instructions, such as 

“please try to spend less money on marketing, because…”, or “…it seems that you require too much time 

defining concrete financial targets, please consult the example in your task description”. Such interventions 

directly address the meta-level process of learning, which means that they transcend the game play, in contrast 

with natural feedback. Although such meta-level intervention is the most dominant mode of teaching, it should 

be noted that generally the controlling power over learners is quite limited: forcing people to learn is 

counterproductive, if not impossible. The human subject, viz. the learner, is in all cases an autonomous agent, 

who may be reluctant to adopt the controllers intervention, or simply fails to understand the significance of the 

controllers instruction. 

The learner’s refusal to adopt the feedback doesn’t mean that the feedback loop itself is interrupted. Actually, the 

learner’s contrary behaviour within the control loop can be regarded as a temporary disturbance of the system, 

which may challenge the loop’s robustness. The learner runs the risk of worsening his or her performance, which 

in turn will produce an even more rigorous controller advice. If the learner keeps neglecting the controller’s 

hints, either the learner’s self-regulation abilities will produce sufficient system performance to continue 

learning, or the learner’s performance will keep going down, which will eventually lead to system breakdown. 

This is exactly why feedback is supposed to be a key factor of learning.  

 

Feedback strategies 

The controller system need not necessarily pass the generated feedback signals on to the system or the learner. 

Indeed many teachers use a pedagogical strategy, which may sometimes use direct feedback, while in other cases 

delayed feedback or even no feedback is preferred. Pedagogical feedback strategies have been extensively 

researched (Hattie and Timperley 2007; Mory 2004; Shute 2009) . It means that the cybernetic cycle should 

include a feedback strategy filter, which defines what feedback is passed on and under what conditions this 

occurs. 

 

The learning cycle 

Analogous to the education cycle the learning cycle includes four components: the learner as an actor in the 

system S, the learner as a self-observer, the learner as a self-evaluator and the learner as a meta-cognitive agent 

who adapts the learning strategy. Essentially the process of learning is fully owned by the human individual, be 

it that in many respects it is a continuous and implicit process that learners can only partly control 

(metacognitive skills).  

7. Multivariate systems 
The approach illustrated above can be extended to multivariate system descriptions. When the system S can be 

subdivided into a number of independent subsystems which all have there own sets of input variables and sets of 

output variables, each subsystem can be treated independently, much like the example given above. However, 

when no independent subsystems can be identified and multiple input variables are connected to multiple output 

variables, the mathematics becomes more complex. A wide class of first order multivariate systems is covered 

by a matrix algebra approach which is commonly known as the time-domain state space representation (Leigh, 

2004). Input variables ui(t) and output variables yj(t) are preferably linked via a linear, time-invariant system 

model, which yields a set of coupled linear differential equations. Having established an appropriate controller 

model, for instance using the PID mechanism, we are able use the output signals yj(t) and generate the controller 

outputs ui(t). These, in turn, can be used as an advice to the learner for prioritising some learning actions above 

others by indicating what action would procure desired outputs yj(t). This means that the calculations would 

allow for guiding learners to certain activities that would compensate flaws in their learning achievements. To 

ensure more subtle feedback messages multiple trigger levels can be used. The technical explanation of the state-

space approach is beyond the purpose of this paper. 

 

8. Conclusion and outlook 
In this paper we have explored how cybernetics in principle can be used to generate learner feedback in complex 

learning environments. By constructing a (dual) cybernetic control loop, error-correcting performance feedback 

can be generated, which can in principle be used for supporting learners. But this achievement is not without 

conditions. It assumes the readiness to capture learning activities as well as learning performances in quantitative 

metrics. Many testing and assessment procedures in education already make use of quantitative standards, either 

in manifest or in implicit ways. Qualitative learner assessments (verbal feedback, portfolios, reflection blogs) or 



 

 

qualitative overall judgements (e.g. “poor”,  sufficient”, “good”, “excellent”) reflect ordinal scales, which allow 

for the easy and justified conversion into numerical values (e.g. marks). 

For being able to generate feedback to learners, the relationship between activities (input variables) and 

performances (output variables) should be made more explicit, be it that detailed understanding of disturbances 

and noise is not required. Various mathematical techniques like Laplace transformations as well as matrix 

algebra can be used to determine optimal control outputs. Best solutions can be calculated in linear processes, or 

processes that can be linearised easily. Although the description in this paper used continuous variables, discrete 

time variables can be treated likewise. An important mechanism that has been explained also is the use of 

feedback decision criteria, which are based on pedagogical theories and models.  

Further research is needed to establish the interconnections between cybernetics and existing pedagogical 

theories and models for feedback and self-regulated learning. Also theories and heuristics for the design of input 

and output metrics are required, that produce valid and useful representations of the learner’s functioning and 

performances, and that cover the underlying mental processes and learner characteristics. Educational feedback 

control mechanisms should be validated with respect to system accuracy, reliability, stability and responsiveness, 

but also with respect to their appropriateness and effectiveness for learners. The research should also aim at 

developing design guidelines and collecting empirical evidence, both in controlled experiments and educational 

practice.  

 

Emerging technologies create new leads for cybernetics in education. For instance, web-based learning, social 

software services and serious gaming provide a range of accessible user tracking and tracing services that enable 

the capturing and monitoring of learner behaviours and performances. Hence, data collection needed so urgently 

for the appliance of activity metrics and performance metrics is much better supported. New modelling 

approaches based on intelligent agents and multi-agent systems also aim at system optimisation, but in addition 

to cybernetics these techniques also lend themselves for logical inference and computation which are needed for 

problems in areas such as vision and language. Yet, the agent concept exactly represents a cybernetic system, 

since all agents are equipped with sensors and actuators that are linked via a feedback control loop. Also, the 

topical domain of learner analytics enlarges the opportunities for implementing cybernetic loops that can guide 

learners to their learning goals. Finally, we point at the trend towards mixed reality solutions, involving the 

entanglement of virtual spaces and physical reality, for instance by including mobile devices, remote controls 

and sensor technologies like location tracking, movement tracking, gesture recognition or bio-sensoring, which 

amplifies the interest in cybernetic principles and demonstrates their topicality and viability.  

 

Cybernetics is not a new branch of science. It actually goes back to the nineteen-forties, and many areas of 

technology and industry rest on its principles. A general observation is that cybernetics is especially useful when 

open loop approaches fail because of complexity. Closed-loop approaches like cybernetics can handle 

complicated processes even when no detailed knowledge of the system is available. In view of the ever-growing 

complexity of learning environments, the tuning of cybernetics to learning processes is a promising journey.  
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Appendix: Mathematical elaboration  
To demonstrate the mathematical procedure we will elaborate an example. Suppose we have a learning context 

S, say a serious game, where students have to carry out certain activities, expressed in activity metric u(t) to 

achieve a certain performance metric y(t). Let the dynamics of S be described by a first order differential 

equation: 
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with a0 and b0 time-invariant coefficients. 

After Laplace transformation of equation (5) we obtain the system transfer function S(s): 
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Assume proportional-integral control, so that the control function C(s) is given by (cf. equation (4)): 
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According to equation (3) we obtain the following expression for the closed loop transfer function H: 
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This formula can easily be rewritten into the form: 
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where p1 and p2 are the poles of the equation, given by: 
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In order to examine the system output response y(t) to a sudden input change u(t), we set u(t) to a unit step 

function (Heaviside), which produces u(s)=1/s in the Laplace domain. This yields the following expression for 

the output spectrum: 
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By reversed factorisation, equation (11) can be rewritten as: 

 

)2()(
)( 2

1

1
0

ps

Q

ps

Q
Qsy





        (12) 

      

where Q0, Q1 and Q2 are constants given by: 
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Taking the inverse Laplace transform of equation (12) yields the output response y(t): 
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Figure 4 displays the output response function y(t) of equation (14) for the case a0=7 and b0=5 and various sets 

of controller variables Kp, Ki. 

 



 

 

 
Figure 4. Three different closed-loop time response functions for a0=7 and b0=4. 

 

 

Curve a) in figure 2 is dominated by proportional control. It produces a large settling time because error 

correction gradually decreases with decreasing error. The long term behaviour saturates well below unit value. 

Such steady state tracking error signifies structural loss of system performance. In curve d), which is greatly 

dominated by integral control, the response is much faster response, but as a side effect prolonged oscillations 

are visible. These are due to the large weight function Ki, which accumulates the errors of the past that can only 

be compensated for by creating errors with opposite signs. Intermediate curves b) and c) balance between the 

two control mechanisms and show a more gradual approach towards the ideal response value y(t)=1. 

Optimisation of the response function requires careful tuning of the controller parameters Kp and Ki. 

 

 

 

 


