
Peer-Allocated Instant Response (PAIR): Computational 
allocation of peer tutors in learning communities 

Wim Westera 
 

Abstract 
This paper proposes a computational model for the allocation of fleeting peer tutors in a 
community of learners: a student’s call for support is evaluated by the model in order to 
allocate the most appropriate peer tutor. Various authors have suggested peer tutoring as a 
favourable approach for confining the ever-growing workloads of teachers and tutors in 
online learning environments. The model’s starting point is to serve two conflicting 
requirements: 1) the allocated peers should have sufficient knowledge to guarantee high 
quality support and 2) tutoring workload of peers should be fairly distributed over the student 
population. While the first criterion is likely to saddle a small number of very bright students 
with all the tutoring workload, the unconditional pursuit of a uniform workload distribution 
over the students is likely to allocate incompetent tutors. In both cases the peer support 
mechanism is doomed to failure. The paper identifies relevant variables and elaborates an 
allocation procedure that combines various filter types. The functioning of the allocation 
procedure is tested through a computer simulation program that has been developed to 
represent the student population, the students curriculum and the dynamics of tutor allocation. 
The current study demonstrates the feasibility of the self-allocating peer tutoring mechanism. 
The proposed model is sufficiently stable within a wide range of conditions. By introducing 
an overload tolerance parameter which stretches the fair workload distribution criteria, 
substantial improvements of the allocation success rate are effected. It is demonstrated that 
the allocation algorithm works best at large population sizes. The results show that the type of 
curriculum (collective route or individualised routes) has only little influence on the allocation 
mechanism. 
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 Introduction 
Electronic learning environments are appreciated for their flexible and immediate access to 
various resources and services. Besides the availability of appropriate learning materials 
students’ expectations comprise high quality, quick and personalised support through direct 
communication with their teachers. Frequent one-to-one communication with students, 
however, strongly raises the workloads of tutors and teachers or, alternatively, is likely to 
erode the support of learners. The teachers’ workload is also amplified by current 
constructivist pedagogies (Brown 1989; Gergen 1995; Westera 2001) that suggests complex, 



open learning tasks requiring intensive, tailored tutoring rather than standardised support. This 
paper addresses this problem by developing a computational model for the arrangement of 
instant, tailored peer support in a community of learners. The proposed model is called the 
PAIR model, which refers to “Peer-Allocated Instant Response”. Several authors report that 
peer tutoring indeed has positive effects on motivation, reflection, self-esteem and 
commitment (Fantuzzo 1989; Anderson 2000). A number of researchers found peer tutoring 
to produce higher learning outcomes (Fantuzzo 1989; Gyanani 1995; King 1998; Wong 
2003). The proposed model comprises a sensible mechanism to link students who ask for 
support directly to the most appropriate fellow students that may provide the support. The 
PAIR-model thereby aims to contribute to preserving appropriate and affordable online 
tutoring services within a population of students. 

 

 Educational context  
The PAIR-initiative, aiming at a mechanism for the allocation of remote peer tutors, was 
launched by the Open University of the Netherlands in 2006 and was supported by Fontys 
University (Eindhoven) and SURF, the national organisation in the Netherlands that co-
ordinates ICT in higher education. The Open University of the Netherlands provides study 
programmes in higher distance education. Students are lifelong learners that study primarily at 
home, using learning tasks and self-instructive materials that are increasingly distributed 
through the internet. The population of learners is quite heterogeneous: students are very 
different with respect to their individual ambitions, age, motives, prior knowledge, study 
tempo and the moment of studying. The learning at the Open University of the Netherlands is 
highly individualised and students are assumed to be largely responsible for their own 
learning process, be it that support is available when necessary to warrant effective learning 
and sufficient learning progress. Face to face contacts between students are very rare, because 
of the context of distance education. Occasionally, computer-supported collaborative work is 
provided in order to train teamwork; also, virtual communities of learners are supported in 
various domains. Yet, the learning remains quite independent and distributed and the learners 
are highly empowered to decide upon their own learning strategies. Within this distributed 
learning context students may often ask for some support through the internet when they 
encounter problems that they cannot solve themselves. This is when normally teachers should 
be available to provide help. But at large communities of learners this consequently tends to 
increase the teachers’ workloads to unworkable and unacceptable levels. This problem is not 
only apparent in distance education but also at regular universities that increasingly apply 
blended learning modalities with online support. In fact, the workload problem is a self-
generated flaw of online education: easy online access overloads the system of online support. 
The PAIR-model intends to counteract this flaw. 
 
 
 

Positioning of the PAIR-approach 
Rather than letting learners post their request in forums or shared workspaces, the PAIR 
model opts for self-organised peer tutor allocation. When a learner asks for assistance, the 
PAIR model selects the most appropriate peer candidate from the student population: the 
model creates fleeting “pairs” of students by taking into account the nature of the request and 
the expertise and past performance of peer candidates. Such mechanism would be highly self-
regulating and would reduce the teachers’ workloads. In contrast with common user groups or 



forums, where students would have to make a public call for support, the active allocation of 
peer tutors suggests a number of advantages: 

• The allocation mechanism puts someone in charge to arrange the support 

• It is certain that support will become available 

• The active allocation allows to select the most appropriate peer tutor 

• The term of support will be reduced (through a code of behaviour) 

• Each call for support can be tracked and monitored 

• The quality of support can be checked against quality standards 

• Providing peer support is recognised as a useful learning opportunity 

• Support activities can be more evenly distributed over the student population 

 

The computational model rests on straightforward logging data of current and past activities 
of learners. It does not include the semantics of the calls for support, for instance by using 
technologies like latent semantic analysis (Van Bruggen 2004; Van Rosmalen 2005), in order 
to arrive at the best peer tutor. The generality of the model, however, doesn’t obstruct the use 
of semantic tools per se. Rather than applying ontologies for the representation of the domains 
and teaching strategies to traverse the domains, this first version of the PAIR-model uses only 
simple navigational data to decide whether a particular peer should be selected to address a 
particular call for support, or not. In fact, while a course or a curriculum is assumed the 
consist of a well-defined set of learning tasks, chapters, exercises, modules or other 
components, the PAIR model only takes into account at which component a student is located 
in the curriculum and what components the student has completed already, without going into 
the domain knowledge or the contents of the components. This reduces the model’s 
complexity substantially. Also, for reasons of simplicity, the PAIR-model will not go into the 
nature (social, pedagogical, domain-related, etc.) and quality of the peer tutoring. Quality 
assurance is an important issue though. This will be covered in field experiments with real 
student populations by allowing students to rate and annotate the significance of each support 
event. By feeding back such quality data to the allocation algorithm a self-regulating social 
networking community emerges that corrects for low quality support. Field experiments in 
real student populations of the Open University of the Netherlands and Fontys University are 
anticipated in fall 2007. These field experiments are beyond the scope of this paper. 

 
For two important reasons the PAIR-model has been implemented in a simulation program:  
The first reason is risk management: the intended arrangement of field experiments with 
hundreds students requires sufficient a priori evidence for the viability of the approach. If the 
allocation mechanism would fail, break down or show severe biases during the field 
experiment, large groups of students would be let down and the project would strand. The 
simulation program has been used to investigate the model’s efficacy and stability under 
various conditions. In particular, the simulation is used for identifying the relevant system 
parameters and for investigating the effects of population size, learning module grain size, 
filtering conditions and curriculum structure on the allocation success rate and the distribution 
of workload over students.  
The second reason is methodological in kind: simulation routines have been used from the 
start to build the model following a rapid prototyping approach. While applying short iteration 
cycles new ideas could be checked in preliminary tests and eventually be adopted, elaborated 



or removed from the model. This approach has warranted convergence to a stable and reliable 
allocation mechanism. 

 

 General model description 

 
Starting points 
We will consider a (fixed) population of students that are individually working on a number 
of domain tasks (learning modules, assignments, domain nodes or learning units) that make 
up the curriculum. It is assumed that individual learning routes and progress of students are 
logged by the system, that is, each time a student completes a learning module and starts with 
a new one the learner positioning data are updated. When a student posts a call for support, an 
event record is created that contains the relevant data of the call. These include the name of 
the calling student, the time of the call, the type of the call, the allocated peer tutor, the time of 
call completion and quality judgements about the provided support. The quality judgement 
may cover various dimensions of the support (response time, involvement, communication, 
effectiveness, reliability and the like). 

 

System parameters  
The domain is assumed to contain a number of domain components (modules) that may be 
combined in various curriculum routes. Each of the modules is described by: 

• Module size (M1) 
• Module complexity (M2) 
 

The individual characteristics of each student are described by 
• The immanent speed of learning (or learning ability) (X1) 
• Prior knowledge (or affinity) for each module (X2) 
• Time constraints: barriers through lack of time (X3) 
• The general predisposition for requesting support (X4) 
• Tutoring capability  
• The individual learning route, which may be linear, random or mixed mode.  
• Logging of study progress (positioning and performance) 

 

System dynamics 
Students that are working on their module may experience problems and may decide to ask 
for support. Such a request triggers a process that comprises several stages, which will be 
described below.  
 

Event trigger 
In a real population students will post their calls at will. Exclusion rules may be necessary to 
prevent that one and the same student would create an avalanche of requests. For example: 
a pending request of a student would prohibit a new request of the same student 
Also, students that fail to post requests may be stimulated to participate.  

 



The call 
At the launch of a request a new event record is created that logs the relevant data. The 
requesting student has to articulate and classify the request. Several variables are defined to 
describe the support event. These include location, time and type of the request. 
 

Communication 
When the allocation has been established (see below) a communication session will start 
between the requester and the allocated tutor to sort out the problem. Contents of the 
communication may be recorded. 
 

Feedback 
When the duo has decided to terminate the dialogue, both will assess the helpfulness of the 
dialogue in order to provide feedback to the system. Such feedback may be needed as input in 
the allocation algorithm and is necessary for monitoring the support quality and the student’s 
satisfaction with the support. One might also want to check if allocated tutors indeed provide 
any support (response times).  
 

Tutor allocation 
An allocation algorithm will be running in order to select the most appropriate peer tutor from 
the population. Various status data will be retrieved from the system to feed the algorithm.  
The allocation algorithm is assumed to meet the criteria in two separate dimensions: 

1. Quality: Select a competent tutor 
The peer tutoring system would fail when incapable tutors are assigned. 

2. Economy: Achieve a fair workload distribution  
The peer tutoring system would fail when only the sub group of highly qualified 
students are involved as a tutor. 
 

 

 The tutor allocation algorithm 
Obviously, the quality criterion and the economy criterion may conflict. Indeed, the 
unrestricted allocation of the most competent tutors would probably saddle a small number of 
very bright students with all the tutoring workload. Gradually, this group is likely to display 
obstruction or omission. In contrast, the unconditional pursuit of a uniform workload 
distribution over the students is likely to allocate incompetent tutors. In both cases the peer 
support mechanism is doomed to failure.  
 

Filter transmission rate and filter performance 
In order to be successful the allocation algorithm should serve both criteria to the same extent. 
To express the balance between these two filter types we introduce the transmission rate T of 
a filter which selects Nout items out of Nin by: 
 

T = Nout/Nin           (1) 
 



In order to ideally produce one tutor out of a cohort of n students, the transmission rate of the 
allocation filter would be 1/n. While the allocation algorithm rests on two separate filter types, 
subsequently the quality filter and the economy filter, a balanced filtering mechanism would 
assign each filter an equal transmission rate of 1/√n.  
 
To assess the performance of each filter as compared to this preferred reference value, we 
would need an mathematical expression to describe deviations from this value. For instance, 
one might want to determine whether the transmission of 5 students out of 64 reflects a better 
filtering performance than the transmission of say 12 students out of 64. Because of the 
asymmetric position of √n at the interval [0, n], linear solutions are not appropriate. For this 
purpose we treat the filtering mechanism as a statistical trial following the binomial process of 
being transmitted by the filter or rejected. Sample size is assumed to correspond with the 
number of candidates n, the number of positive outcomes reflects the number of transmitted 
students and the chance of a positive outcome is set to the reference value 1/√n. Application 
of the associated binomial distribution enables us to assign performance values to the various 
outcomes. Although this statistical procedure essentially does not per se describe the 
functioning of a particular filter it provides an indicator of a filter’s performance as compared 
to the reference filter.  
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Figure 1. Primary filtering power as a function of transmission, in case of two serial filters 
(n=64). 
 
Figure 1 displays the filter performance curve for n = 64. For example, it assigns a 
performance score of 1.0 if 8 students pass the filter (which indeed corresponds with the 
reference value 1/√n (cf. 8/64 = 1/√64); transmitting 5 students produces a performance score 
of 0.59, transmitting 12 students produces a performance of 0.31.  
Below, we will first specify different types of allocation filters and subsequently describe how 
these can be combined in a sensible and substantiated way. 



 
Quality filters 
Various quality filters can be designed in order to select the most appropriate candidates out 
of the student population.  
 
Proximity filter: a problem-sharing pedagogy 
This filter would select all students i that are currently working on the same module m as the 
requesting student. A matching score may be defined by accounting for the time each student 
already has been working on the module: 
 
  Score(i) = ( t- t0(i,m) + 1) / (t - min(t0(i,m)) + 1)    (2) 
 
where  
t is the actual time of the call for support,  
t0(i,m) is the time that student i has started working on module m.  
 
The variable Score(i) would indicate the degree of expertise student i has already acquired in 
module m. The denominator assures a mapping of the score into the interval [0,1]. A cutting 
score of the filter may be defined by the transmission rate of 1/√n. That is, the filter is applied 
while decrementing the variable (t - t0(i,m)) until the number of selected candidates 
approximates the desired cross-over value (√n). 
 
Completion filter: a problem-solving pedagogy 
This alternative procedure selects recent completers of the relevant module. That is, the 
selected peer candidates have mastered the module and thus may be assumed to have acquired 
the relevant expertise. While recency assures the freshness or applicability of the expertise a 
matching score may be defined by: 
 
  Score(i)= tc(i,m) / t        (3) 
 
where  
tc is the time of completion.  
 
Just like the proximity filter, the value of Score(i) is in the interval [0,1]. Note that the 
completion filter and the proximity filter are mutually exclusive: the proximity filter selects 
students that are working on the same module, while the completion filter finds students that 
have completed the module already. Again, a cutting score may be defined by the desired 
transmission rate of 1/√n. 
 
Economy filters 
Two distinct types of economy filter will be described. 
 
Favour in return: the direct-benefit principle 
This filter holds that support activities are allocated to frequent callers for support, as to let 
them “pay” for previous benefits. Such a mechanism would discourage students to post many 
futile calls for support and thus would reduce the number of plain “profiteers”. Likewise, 
students that seldom call for support themselves have to be protected from calls by other 
students. In principle, one might choose the number of tutoring activities for each student to 
never exceed the number of calls for support. To allow some flexibility in the system, we 



introduce the overload tolerance Of, which indicates how much the number of tutoring acts of 
each student is allowed to outnumber the number of requests. We distinguish two approaches: 
 
Favour in return: absolute overload tolerance 
The overload tolerance is now expressed as an absolute number to indicate the allowed ceiling 
of the deficit between the number of supports S(i) by student i and the number of calls for 
help C(i) of student i. 
 
  Score(i)= (Of - S(i) + C(i)) / (Of + C(i))     (4) 
where 
Of is the absolute overload tolerance 
S(i) is number of supports by student i  
C(i) is the number of calls for help of student i 
The variable Score(i) represents the distance to the overload ceiling relative to the maximum 
allowed distance. Consequently the formula yields scores at [0,1]; it would sink below zero 
when the overload ceiling is crossed. 
 
Favour in return: relative overload tolerance 
The overload may also be expressed as a percentage of the tutoring load. This would take into 
account a gradually growing ceiling when the number of tutoring acts increases. To calculate 
a normalised score equation(4) can be used while replacing Of with Ofr . S(i): 
 
  Score(i)= ((Ofr - 1) . S (i) + C(i)) / (Ofr . S (i) + C(i))   (5) 
where  
Ofr is overload tolerance relative to the number of tutoring acts. 
 
Uniformity: the solidarity principle 
The uniformity filter selects students with the lowest number of supports acts so far. In 
contrast with the “favour-in-return” filter it procures that support activities are evenly 
distributed over the students. As in the case of the favour-in-return model one may define the 
overload tolerance Ou, which defines the tolerance of deviating from a uniform distribution of 
tutoring tasks over the students. Similarly to the favour-in-return filters we distinguish an 
absolute overload method and a relative overload method. 
 
Uniformity: Absolute overload tolerance 
Here the overload tolerance defines how much the number of tutoring acts of student j is 
allowed to exceed the average of tutoring acts per student. A normalised score of such filter 
can be expressed as the relative distance to the overload ceiling: 
 
  Score(i)= (Ou - S(i) + <S(i)>i) / (Ou + <S(i)>i)    (6) 
 
where 
Ou is the overload tolerance, indicating how much the individual student’s number of tutoring 
acts is allowed to exceed the average tutoring load 
 
Uniformity: Relative overload tolerance 
The overload tolerance may also be expressed as a percentage of the tutoring load. This would 
take into account a gradually growing tolerance when the number of tutoring acts increases. 
To calculate a normalised score the previous formula can be used while replacing Ou with Our . 

S(i): 



 
  Score(i)= ((Our -1) . S(i) + <S(i)>i) / ((Our + 1) + <S(i)>i)   (7) 
 
where  
Our is the relative overload tolerance, indicating the percentage that the individual student’s 
number of tutoring acts is allowed to exceed the average tutoring load. 
 
Allocation through a balanced combination of filter types 
Each of the filter types described above, however, may fail by either lacking transmission 
power (<<√n) or by a transmission overshoot (>>√n). For instance, the completion filter may 
fail at the start of a run, because none of the students will have completed any modules yet. 
Or, the proximity filter may fail while at the time none of the other students is working at the 
relevant module. In both cases alternative filters have to be considered. Below we will define 
a generic filtering procedure that assures an effective and balanced combination of quality 
filters and economy filters. The filtering routine is a diverse and integer set of combined 
quality and economy filters which includes various fall-back routes to produce the most 
appropriate peer candidate. Figure 2 represents the proposed tutor allocation algorithm 
 

 
 
Figure 2. The allocation procedure combining various filter types. 
 
The allocation procedure comprises the following steps: 
 

1. Exclude self-tutoring 
Naturally, the student that calls for support is excluded from the group of peer 
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candidates. When the total number of students is n, this step produces (n-1) 
candidates. 

2. Exclude recent tutors 
In order to assure a spread of tutoring activities over time, students that have been 
deployed recently as a tutor are excluded from the group of peer candidates. The time 
span that defines the recency, the tutor dead-time, may be varied in order to adjust the 
overall filter performance. When a number of nr additional students would be excluded 
by this recency filter, the number of peer candidates reduces to (n - nr -1). 

3. Quality: Proximity filter 
The proximity filter is applied by incrementing the variable (t - t0(i,m)) until the 
transmission rate T, cf. equation(1), has reached a value of  1/√(n - nr -1). The filter 
produces a set of candidates which number may vary between 0 and √(n - nr -1). 
selected candidates may have different matching scores according to equation(2). 

4. Quality: Completion filter 
If  the proximity filter fails to produce any candidates, that is, no other students are 
working on the relevant module, the completion filter is put in place. The completion 
filter is applied by decrementing the occurring values of tc(i,m)) until the transmission 
rate T has reached a value of  1/√(n - nr -1). The filter produces a set of candidates 
which number may vary between 0 and √(n - nr -1). According to equation(3), 
candidates may have different matching scores. 

5. Quality: Teacher allocation 
When all quality filters fail, that is, no candidates are selected by the previous filters, 
the tutoring role is forwarded to the teacher. From the objective to produce a self-
regulative peer tutoring allocation mechanism it follows that this situation should have 
little occurrence. 

6. Quality and Economy: Favour-in-return filter 
This filter combines the quality matching scores as defined above with the economy 
matching score by multiplication to produce a total score for each candidate j. The 
filter selects students with highest scores. Occasionally, the rank of high-quality 
candidates may sink because of low economy scores. Also the opposite may occur. 

7. Quality and Economy: Uniformity filter 
If the favour-in-return filter fails, that is, no candidates are left to select a peer tutor, 
the uniformity filter is put in place. The filter selects students with the highest product 
of the quality score and the economy score.  

8. Quality and Economy: Random selection filter 
In case the previous filtering steps produce two or more equally qualified candidates 
the random selection filter finalises the allocation procedure by randomly selecting 
one candidate. 

 
This allocation procedure involves 11 different routes. These are specified in table 1 below. 
 
 
Route ID FILTERS Quality criterion Economy criterion Outcome 
I 1-2-3-4-5 Completion fails none Teacher 
II 1-2-3-6 Proximity succeeds Favour succeeds =1 Student 
III 1-2-3-6-8 Proximity succeeds Favour succeeds >1 Student 
IV 1-2-3-6-7 Proximity succeeds Uniform succeeds =1 Student 
V 1-2-3-6-7-8 Proximity succeeds Uniform succeeds >1 Student 
VI 1-2-3-6-7-5 Proximity succeeds Uniform fails Teacher 
VII 1-2-3-4-6 Completion succeeds Favour succeeds =1 Student 



VIII 1-2-3-4-6-8 Completion succeeds Favour succeeds >1 Student 
IX 1-2-3-4-6-7 Completion succeeds Uniform succeeds =1 Student 
X 1-2-3-4-6-7-8 Completion succeeds Uniform succeeds >1 Student 
XI 1-2-3-4-6-7-5 Completion succeeds Uniform fails Teacher 
 
Table 1. Specification of filtering routes. 

 
 The simulation program 

In order to investigate the sensitivity, efficacy and stability of the allocation model under 
various conditions a computational simulation has been developed. The model has been 
implemented in Scilab-4.1 open source software (http://www.scilab.org). The source file and 
instructions are available at http://www.open.ou.nl/wim/paircode.txt. Graphics have been 
produced through imports in Excel. 
 
Creating curricula and student populations 
In the simulation, curricula with modules of different size and complexity are defined by 
generating random trials from a normal distribution. Figure 3 shows a specimen of 20 
modules of different size, expressed in units of time (average module size=50; � =50/3) 
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Figure 3. Specimen: module size generated by a random trial from a normal distribution. 
 
Likewise, the complexity of modules is generated. For the student populations various 
properties have to be predefined: learning capabilities, predisposition for requesting support, 
time available and prior knowledge. Here also random trials from a normal distribution have 
been applied. In addition, for each student the calculated overall prior knowledge has been 
randomly distributed over the modules . 



Creating module transitions 
For each student a personalised learning route along the modules is calculated. In a linear 
curriculum all students share the same route. To decide whether a transition between modules 
is likely, learning progress of student i in a module m is calculated by: 
 
  Progress(i,m) = (t - t0(i,m)) / M1(m) / M2(m) . X1(i) . X2(i) . X3(i)  (8) 
 
where 
t is time 
t0(i,m) is the time that student i has started working on module m 
M1(m) = size of module m 
M2(m) = complexity of module m 
X1(i) = speed of learning of student i 
X2(i) = prior knowledge of student i 
X3(i) = Time available for student i 
 
Indeed, study progress may assumed to be proportional with time spent and the performance 
factors describing learning speed, prior performance and time available, and it will be 
hampered by module size and module complexity. When progress exceeds a threshold value 
the module is set to the status “completed” and the student is routed to the subsequent module 
in the personalised learning route. 

Creating support requests 
Students working on a learning module may post a call for support anytime, that is, time and 
time-dependent variables like learning progress are assumed irrelevant. To express the 
students’ urging to post a call for support we use the formula 
 
  Eventtrigger(i) = Random[0,1] . X4((i)/  X1(i) / X2(i)    (9) 
 
where 
X1(i) = speed of learning of student i 
X2(i) = prior knowledge of student i 
X4(i) = predisposition of student i for requesting support  
Random[0,1]= a random generator in the interval [0,1] 
 
By setting a trigger threshold the rate of support requests can be controlled. 
 

Basic parameters 
Basic parameter values for the simulation are given by table 2. 
 
Population size typically 100 
Average module size typically 15 
Number of modules typically 20 
Evaluation time typically 200 
Average prior knowledge fraction typically 0.10 
Request rate 
 

typically 0.3 requests per student per unit of 
time 

Overload (absolute) typically 0-200 



Tutor dead-time typically 2 
Standard deviation of normal distributions typically 1/3 – 1/6 
 
Table 2. Typical values of simulation parameters. 
 
Some 500 simulation runs have been carried out. If one unit of time in the model would be 
equated with 1 hour of study load, the model has simulated some 100.000 hours of study. 
Runs have been frequently repeated in order to check reproducibility and reduce statistical 
noise. Spread of aggregate results, while applying typical values of table 2, was always below 
3%. 
 

 Results and discussion 
Various filter settings and conditions have been evaluated. Table 3 shows four main allocation 
types (A, B, C, D) that have been investigated. 
 

Allocation type 
Filters\     A B C D 

transmission ceiling (√n) x  x  Proximity filter 
no transmission ceiling  x  x 
transmission ceiling (√n) x  x  Completion filter 
no transmission ceiling  x  x 
relative overload tolerance   x x Favour-in-return filter 
absolute overload tolerance x x   
relative overload tolerance   x x Uniformity filter 
absolute overload tolerance x x   

 
Table 3. Overview of investigated allocation types. 
 

Allocation success rate against overload tolerance 
Figure 4 shows the allocation success rates for each of the allocation types of table 3. For 
reasons of simplicity the assigned values of overload tolerance are chosen identical for the 
Favour-in-return filter and the Uniformity filter. The horizontal scale represents the absolute 
tolerance; relative overload values (cf. C and D) are converted into absolute values. 
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Figure 4. Allocation success rates as a function of overload tolerance (conditions A, B, C and 
D, n = 100). 
 
Apparently, the call for an evenly distributed student load or a individual balance between 
requests and supports (overload tolerance = 0) strongly reduces the number of peer 
candidates. As a consequence, frequent dead ends occur in the allocation and these oblige to 
redirect the calls to the teacher, which obviously counteracts the objectives of the peer 
allocation mechanism. By raising the overload tolerance the success rate of the allocation 
procedure increases substantially.  
 
From figure 4 it can be also concluded that the lowest success rates occur at conditions A and 
C, both featuring a transmission ceiling (√n). By applying a transmission ceiling the quality 
filter’s output is reduced to a maximum of √n candidates of sufficient quality. While this 
procedure implies the probable exclusion of suitable candidates one may indeed expect a 
negative effect on the allocation mechanism. When the transmission ceiling is omitted (cf. B 
and D), it also follows that the success rates rise substantially. By omitting the power ceiling 
lower quality students become available for the economy filter.  
 
Also, it turns out that the absolute overload ceiling method (cf. A and B) produces better 
success rates than the relative method (C and D). This can be explained by the fact that in the 
case of an absolute method it will take some time before the transmission ceiling is reached 
and dead ends occur, while in the relative method the transmission ceiling will be low at the 
start and thus cause the early exclusion of peer candidates. As a consequence the relative 
method may be expected to cause the teacher load to spread more evenly over time, while the 
absolute method would progressively show more teacher load. This explanation cannot be 
confirmed, however. Over a wide range of conditions the distribution of teacher load over 
time appears to be quite similar for both methods.  
 



Dynamics of the allocation success rate 
Figure 5 shows the instantaneous allocation success rate, that is the number of successful 
allocations at time t relative to the number of calls at time t. For (absolute) overload = 20 the 
success rate is always close to one. For lower values of overload, serious problems occur, 
with success rates occasionally below 50% or even worse. Note that mirroring the curves 
horizontally (x � 1-x) yields the teacher load as a fraction of total tutoring load.  
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Figure 5. Instantaneous allocation success rates as a function of time (condition A, n=100). 
 
Matching scores 
As for the transmission ceiling (√n) one might conclude that it should be omitted (cf. B and 
D). However, the drawback of this omission is that many poorly qualified learners are 
allowed to pass the quality filter and ultimately may be selected to give support. This effect 
can be read from figure 6, which shows quite lower matching scores when the transmission 
ceiling are omitted (conditions B and D as compared to conditions A and C, respectively). 
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Figure 6. Matching scores as a function of overload tolerance (conditions A, B, C and D, 
n=100). 
 
For all conditions the matching score increases with higher overloads. Indeed, raising the 
overload value allows more frequent allocation of the highest scoring tutor candidates. As a 
consequence the distribution of workload over the students shows larger deviations from 
uniformity: increasingly only part of the students provide most of the tutoring.  
 

Workload distribution 
Figure 7 displays an example of workload distribution over students. The workload is 
expressed as a fraction of the average workload.  
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Figure 7. Distribution of workload over students (conditions A and B, n=100). 
 
Conditions A and B show quite similar outcomes. While students will only be involved with 
one call at the time no accumulation of workload occurs. Also defining a dead time in order to 
recover from a tutoring activity counteracts accumulation. 
 
A measure for the spread of peer tutoring load over students is the standard deviation �. 
Figure 8 shows how � changes relative to the average load as a function of overload tolerance.  
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Figure 8. Spread of tutoring load (conditions A and B, n=100). 
 
Note that the curves for condition A and B nearly coincide.  Clearly, at increasing overload 
tolerance the spread decreases, which means that the distribution of workload becomes less 
uniform. Indeed, at higher values of overload tolerance there are hardly any restrictions for 



repeatedly selecting the best quality tutors. This is in accordance with the higher matching 
scores as displayed in figure 6.  

The effects of tutoring dead time 
The application of a tutoring dead time, that is the exclusion of candidates for a certain period 
of time after they have been working on a tutoring task, hampers the allocation procedure and 
will increase the number of re-directs to the teacher. Naturally, while increasing the dead 
time, the number of candidates decreases and thus reduces the allocation success rate (figure 
9). 
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Figure 9. Allocation success rate against tutoring dead time (condition A, n=100). 
 

The effects of population size 
The premise of the model is that an allocation algorithm is needed to create the appropriate 
match. At low population sizes the same duo’s are likely to occur more often, which would 
make the allocation mechanism superfluous. Figure 10 shows the allocation success rate at 
different population sizes 
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Figure 10 Success rates at various population sizes (condition A and B) 
 
For condition A the allocation success rate shows a peak at moderate population sizes, while 
it slowly decreases at larger populations. The effect is significant and reproducible. It has has 
turned out that this effect is due to the cross-over mechanism that restricts the transmission 
power of the quality filter. Because of the nonlinear nature of the filter transmission ceiling 
(√n) the quality filter tends to select an increasingly smaller fraction of high quality 
candidates at larger populations. Indeed, at n=100 the transmission ceiling allows the 10% 
highest qualified candidates to pass; at n=500 this is reduced to the 4.4% (=1/√500). While 
these elite candidates are more likely to become eliminated in the economy filter, the cross-
over mechanism work adversely. Therefore, at large populations one should be cautious with 
the cross-over ceiling mechanism. At larger populations omitting the cross-over mechanism 
produces higher allocation success rates.  

Random curricula 
So far, all results refer to a linear sequence of modules that is equal for all students. Similar 
simulation runs have been carried out with a random curriculum, providing each student with 
an individual learning path. Figure 11 displays a success rate comparison between a linear and 
a random curriculum.  
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Figure 11. Allocation success rates for a linear and a random curriculum (condition A, 
n=100). 
 
The results for the various curriculum types coincide within a few percents. Curriculum 
structure is thus concluded to be of little importance as a determinant. 
 

 Conclusions 
The simulation results support the feasibility of the self-directing peer tutor allocation 
mechanism. The proposed model is sufficiently stable within a wide range of conditions. For 
the economy filters to function properly it is necessary to use overload tolerances up to 10 or 
20 supports on a total load of 60 – 70 per student; this suggests an overload of about 30%. At 
lower values of the overload tolerance, the allocation success rates drop dramatically. At 
higher values the success rate approaches 100%, but the tutoring load is carried by only part 
of the students. It also turns out that the absolute overload tolerance method produces higher 
success rates than the relative method. 
 
In order to achieve a balanced filtering of quality criteria and economy criteria a cross-over 
transmission ceiling has been introduced for the quality filter. This measure excludes low 
quality tutors and produces better matching scores. The drawback of this transmission ceiling 
is, however, that often the same high quality elite is selected, which causes increased failures 
of the subsequent economy filter. Higher success rates are achieved by omitting the 
transmission ceiling. Yet, this goes at the expense of the matching scores, which sink 
substantially.  
 
The application of long tutoring dead times ensures the fair spread of student load over time. 
Yet, it also hampers the peer allocation procedure, because students that have completed their 
consults are not available right away. Consequently, the number of re-directs to the teacher 
will increase and the success rate drops. 
 
The allocation algorithm works best at large population sizes. However, for populations above 
some 100 students (within the constraints of table 2) the cross-over ceiling produces an 
unwanted side effect by repeatedly producing the same fraction of high quality elite 



candidates that gradually will be rejected by the economy filter. While omitting the cross-over 
ceiling allows many low quality candidates to be allocated – indeed the matching scores drop 
substantially -, one might consider to define the cross-over ceiling somewhere in the interval 
(√n, n) rather than the extremes √n (conditions A and C) or n (conditions B and D). 
 
Simulations have been carried out for both the same linear curriculum for all students and for 
a randomised curriculum for each student individually. The results show that curriculum 
structure has little influence on the allocation mechanism. 
 
A simple extension of the current model would be the use of various support types: by 
labelling the requested type of support into predefined categories an additional quality 
criterion becomes available to select the best candidates. In addition, this can be combined by 
a self-scoring of the peer tutoring events. Self-scoring by the fleeting pairs of students 
provides relevant data to feedback tot the system in order to improve system stability, to apply 
remedial measures and to improve the fit between requester and supporter. These topics will 
be subject of future research. 
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