
Performance assessment in serious games: Compensating for the 

effects of randomness 

 

Westera, W. (2014). Performance assessment in serious games: Compensating for the 

effects of randomness. Education and Information Technologies. Online version 

http://link.springer.com/article/10.1007/s10639-014-9347-3. DOI 10.1007/s10639-014-

9347-3 

This paper is about performance assessment in serious games. We conceive serious gaming as a 

process of player-lead decision taking. Starting from combinatorics and item-response theory we 

provide an analytical model that makes explicit to what extent observed player performances 

(decisions) are blurred by chance processes (guessing behaviors). We found large effects both 

theoretically and practically. In two existing serious games random guess scores were found to 

explain up to 41% of total scores. Monte Carlo simulation of random game play confirmed the 

substantial impact of randomness on performance. For valid performance assessments, be it in-

game or post-game, the effects of randomness should be included to produce re-calibrated scores 

that can reasonably be interpreted as the players´ achievements.   
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Introduction 

For many decades the engaging properties of games have been used for learning and 

other serious purposes (Abt 1970). These so-called serious games cover a wide range of 

domains, objectives, approaches and styles as to meet specific educational requirements 

and audiences. Because learning is their primary purpose a critical element of serious 

games is the assessment of learning achievements (e.g. Chin, Dukes, & Gamson 2009; 

Bellotti, Kapralos, Lee, Moreno-Ger, & Berta 2013; Connolly, Boyle, MacArthur, 

Hainey, & Boyle 2012; Shute, Ventura, Bauer, & Zapata-Rivera 2009). Our paper 

provides a methodology for analysing to what extent random user behaviours (guessing 

rather than thoughtfully deciding) affect the validity of in-game assessment data. It uses 

a statistical approach for making explicit to what extent the observed player 

performances are blurred by chance processes and explains how to compensate for this. 

In many cases the assessment of game sessions is arranged as post-session 

summative test, interviews or questionnaires, which covers the learners’ overall 

achievements. Generally, however, games include measures for assessing the learner’s 

progress and failures, which are used for score assignment, level transitions, feedback 

and adaptation of the game play (Shute et al. 2012; Boston 2002). This fits in the trend 

toward formative assessment. Redeker, Punie and Ferrari (2012) describe the stepwise 

development from 1st generation testing in the 1990s (automated administration and 

scoring of conventional tests) and 2nd generation testing in the 2000s (adaptive 

summative testing) to 3rd generation testing from 2010 (continuous, unobtrusive, 

monitoring and formative assessment). Obviously, educational measurement is shifting 

from large numbers of students with only one observation toward an individualised 

approach with a large number of observations.  

http://link.springer.com/article/10.1007/s10639-014-9347-3


In-game assessment is highly relevant for serious games, because the learning-

by-doing approach they generally implement and the freedom of movement that goes 

with it, may easily affect the effectiveness of learning. Since the instructional control in 

game environments is very limited, players may easily manoeuvre themselves into 

positions that are unfavourable for successful and efficient learning. Learning-by-doing 

means learning from the experiences that result directly from one’s own actions, as 

contrasted with learning from watching others perform, reading others’ instructions or 

descriptions, or listening to others’ instructions or lectures (Reese 2011). Learning-by-

doing activates learners and helps them to acquire the tacit knowledge that is 

intrinsically bound to the actions performed. It includes practice, discovery, inquiry, 

problem solving, and authentic contextual knowledge to achieve learning goals 

(Schank, Berman, & Macpherson 1999; Aldrich 2005; Schank 1995). Unfortunately, 

just doing things and having the associated experiences are not a sufficient condition for 

learning, because 1) doing a task may be too difficult (e.g. playing a piece of 

Rachmaninoff), 2) learning to do things may require doing things that don’t look like 

the final task at all (e.g. practicing musical scales) and 3) just doing things does not 

necessarily lead to deep cognitive processing and the associated insights and 

understandings. With respect to the latter issue, research into computer-assisted 

instruction and simulations has shown to favour trial-and-error learning strategies that 

involve a lot of doing, but lack any thoughtful analysis of experiences (Vargas 1986). 

Likewise, games foster the tendency to act before thinking. Especially, game 

interactions that put little cognitive load on the users, such as interaction by direct 

manipulation with graphical objects, tend to induce a more implicit, trial and error 

learning mode (Guttormsen Schär et al. 2000). Game design patterns that induce stress, 

such as a time lock, time pressure or time-dependent scores are likely to promote 

hurried, shallow or incomplete processing. Scholars such as Schön (1983) and Kolb 

(1984) realised that just having the experience is not a sufficient condition for learning, 

but should be complemented with a thoughtful review process. 

The core assertion of this paper is that in-game assessment should take into 

account the effects of random, thoughtless gaming behaviours and compensate for it. 

Our research questions are stated as follows: 

(1) How can we formally describe the effects of random game play on the player´s 

performance score?  

(2) What is the magnitude of the effects of random game play? 

(3) What is the impact of random game play in practice? 

First we will explain the mechanism of player-led decision taking that a wide 

variety of serious games are based on. Next we will provide an analytical description of 

decision taking that takes into account the influence of random choices and we will 

connect this to performance scores. We will develop an analytical model that describes 

the impact of randomness and we will investigate the practical impact by applying the 

formalism to two existing serious games. We conclude our study by discussing the 

outcomes.  

Serious game play as a process of active decision taking  

A wide range of serious games have demonstrated to provoke active learner 

involvement through exploration, experimentation, competition and co-operation 



(Westera 2008). Aldrich (2005) distinguishes between four basic approaches to serious 

games:  

(1) Branching stories allow the player to choose their own path through the game; 

(2) Interactive spread sheets offer numerical simulations that can be manipulated by 

the player;  

(3) Game-based models, which are derived from established entertainment games, 

e.g. TV-quiz formats;  

(4) Virtual labs, which offer 3D environments and objects for risk-free 

experimentation.   

 

Aldrich (2005) explains that in practice the boundaries between the approaches are 

blurred: many games combine branching mechanisms, simulations, popular formats and 

3D representations. In all cases game play involves active decision taking by the 

players, who are challenged to achieve favourable outcomes and maximise their 

performances in the game. Whatever game approach is chosen, player-led decision 

taking is the very basis of game-based learning. It goes with active involvement, 

freedom of movement, problem ownership, adopting a certain role and responsibility, 

and the empowerment to change the game´s state (Westera 2008). Conceptually, 

however, playing a game is not very different from taking a multiple choice test, be it 

that the game style and context may easily conceal the underlying multiple choice 

nature. The multiple choice pattern holds for decision nodes in a branching story, the 

parameter selection and value assignment in simulations (e.g. buying supplies), the 

answering of quiz questions, as well as the experimentation design and actions in a 

virtual lab. More openly, many games comprise built-in multiple choice items for 

establishing progress or other purposes (Becker & Parker 2011). Shute et al. (2009), 

however, advocate stealth, unobtrusive assessment in games, because this avoids the 

interruption of game play which is known to negatively affect the learning process 

(Bente & Breuer 2009). Whatever model is favoured, player-led decision-taking is a 

predominant feature of serious games. Players´ decisions are the basis of progress 

monitoring, adaptive game play, performance assessment and providing feedback to the 

players, either expressed as a score, a badge, a privilege, an achievement or any other 

performance qualification.  

Formal description of decision taking 

A multiple-choice (MC) item is a closed question composed of a premise or lead 

question (stem) followed by a list of possible answers (alternatives) to be selected by 

the candidate. In its basic form the MC item is a single-answer question (single select 

list): only one of the alternatives is the correct answer, the other alternatives are wrong. 

A special case of a single-answer item is a True-False item or Yes-No item, which has 

only two alternatives. For interpreting the score obtained from MC questions we have to 

realise that selecting the right answers may be partly due to chance. The Random Guess 

Score (RGS) is the probability that a randomly selected answer is the right answer (Ebel 

& Frisbie 1991). The RGS of an MC item with m alternatives is 1/m. It means that 

providing the right answer is not necessarily the result of having the right knowledge, 

but can be a matter of being lucky. Hence, chance processes blur the significance of the 

observed scores. In test construction this is generally addressed by calculating a 

minimum score required for passing the test (the cut score, or pass mark), which takes 

into account the effects of chance.  



As opposed to a single-answer question a multiple-answer question (multiple-

response question or multi-select list) allows the candidate to select more than one 

answer. The chance of being successful by randomly selecting answers now depends on 

the boundary conditions that apply. Consider a multiple-answer question composed of 

m alternatives, k of which are correct answers (k≤m). In the easiest case the stem text 

makes explicit that the candidate has to select exactly k correct answers. Under this 

constraint the multiple-answer question reflects the single action of selecting k correct 

alternatives from a list of m alternatives. This is technically equivalent with a single-

answer question that offers m’ alternatives, where m’ is given by the binomial 

coefficient (“m choose k”): 

 𝑚′ = (
𝑚

𝑘
) (1) 

A silent assumption made here is that a positive score is only assigned when exactly all 

k answers are selected (dichotomous scoring). If the candidate has selected too few 

correct answers (<k) or has given some wrong answers, no score is assigned.  

If the value of k is not made explicit beforehand the chance of selecting the right 

alternatives by guessing is much lower, because there are more combinations of 

alternatives to choose from. In such cases the formula for converting a multiple-answer 

question with m alternatives to a single-answer question of m” alternatives is now given 

by: 

 
𝑚′′ = ∑ (

𝑚

𝑘′
)

𝑚

𝑘′=1

 (2) 

The number m” covers all possible selections of available alternatives and their 

combinations. Because of this technical equivalence of single-answer questions and 

multiple-answer questions we may restrict our analysis to the case of single-answer 

items. 

Describing scores in sets of MC questions 

Decision taking in (serious) games can be interpreted as a series of MC items to be 

addressed. For evaluating the performance score of a player it is needed to devise a 

scoring system that takes into account the weight and complexity of the items. Consider 

a game that can be described as a set of n single-answer MC items. Let mi denote the 

number of alternatives of item i. Let xi denote the correctness of the player’s answer of 

item i, by setting xi=1 in case of a correct answer and xi=0 if the answer is wrong. In 

addition, let wi be a score weight function, which takes into account the importance or 

complexity of item i. Then the total weighted score S achieved by the player is given 

by: 

 
𝑆 =∑𝑥𝑖 ∙ 𝑤𝑖

𝑛

𝑖=1

 (3) 

Obviously the minimum score (all xi=0) is 0; the maximum score (to be obtained if all 

xi=1) is given by: 



 
𝑆𝑚𝑎𝑥 =∑𝑤𝑖

𝑛

𝑖=1

 (4) 

In order to make fair judgements about the cut score, which is the minimum 

score required for passing the test, we have to take into account the score level that is 

obtained by simply answering the questions randomly (the random guess score: RGS). 

The RGS sets a lower bound to the performance that can reasonably be attributed to the 

candidate’s capabilities. A normalized score SN representing the candidate’s 

performance, corrected for performance by chance, should thus be expressed as 

 
𝑆𝑁 =

𝑆 − 𝑅𝐺𝑆

𝑆𝑚𝑎𝑥 − 𝑅𝐺𝑆
 

(5) 

Calibrating the cut score as a 50% normalized score yields the following expression for 

the cut score Sc: 

 𝑆𝑐 = 0.50 ∗ (𝑆𝑚𝑎𝑥 − 𝑅𝐺𝑆) + 𝑅𝐺𝑆 (6) 

Expressed as the normalised cut score, which is the cut score Sc relative to the 

maximum score Smax, we obtain: 

 
𝑆𝑐,𝑛𝑜𝑟𝑚 = 𝑆𝑐/𝑆𝑚𝑎𝑥 = 0.50 ∗ (1 + 𝑅𝐺𝑆/𝑆𝑚𝑎𝑥) (7) 

For the calculation of the RGS and the cut score we will distinguish between three 

different cases. 

4.1. Case 1: No item completion required 

In this case we assume that an item needs not be completed and corrected before 

continuing with the next one. Since the chance of guessing the right answer of item i is 

1/mi, the RGS is found by replacing the score xi with 1/mi in equation (3): 

 
𝑅𝐺𝑆 =∑

𝑤𝑖

𝑚 𝑖

𝑛

𝑖=1

 (8) 

The normalised score, the cut score and the normalised cut score can now be calculated 

with equations (5)-(7). 

4.2. Case 2: Item completion required (with replacement) 

In this case the candidate has to pass each item correctly by adjusting the selection of 

alternatives until the right answer is given. Such situation is quite exemplary for 

decision taking in serious games, for instance when closures are removed after 

completing a challenge or a level successfully. Here performance score is not based on 

the answers given, but on the number of trials (y) needed to select the right answers. We 



need to define a scoring function S(y), which translates observed behaviors (number of 

trials needed) into judgements of performances. Although different value systems may 

be used for defining the score, various constraints apply: for instance the score function 

should be representative, credible, plausible, simple and understandable and it should 

not conflict with common sense. Mathematical requirements include monotonousness, 

transitivity, proportionality and homogeneity (multiplicative scaling). Clear boundary 

conditions arise from the maximum score, which is assigned when y=1, and the 

minimum score, which approaches to zero for large values of y. For the aim of our 

study the expression of the score function is not critical: any score function that 

complies with the above-mentioned criteria would do. In its most simple form the 

player’s score S(y) would be expressed as a reciprocal function of y: 

 𝑆(𝑦) =
𝑤

𝑦
 (9) 

This formula matches all criteria explained above. Similar to the non-completion case 

described before, we can now determine the influence of randomness.  

For calculating the RGS we need to link the score function S(y) of the item to 

the probability of being successful after y trials. The process of randomly selecting 

alternatives in a single-answer MC item is a repeated Bernoulli trial. In case a player 

adopts a strategy of just randomly selecting an answer, without remembering wrong 

answers, the repeated Bernoulli trial is an experiment “with replacement”, which means 

that the wrong answers remain part of the set of alternatives that the player chooses 

from. The trials are independent and can be described by the binomial distribution. If 

the item has m alternatives the probability of having one correct answer in y trials (y>0) 

is given by: 

 
𝑃(1, 𝑦,

1

𝑚
) = (

𝑦

1
) (

1

𝑚
)(1 −

1

𝑚
)
𝑦−1

 (10) 

However, we’re not interested in the probability of having a correct answer in y 

trials, but in the probability P’ of having a correct answer exactly in the y
th

 trial and not 

in the previous ones. Since all draws have the same probability this means that we need 

to divide by the number of permutations of the y trials. This reduces equation (10) to  

 
𝑃′ (1, 𝑦,

1

𝑚
) = (

1

𝑚
)(1 −

1

𝑚
)
𝑦−1

 (11) 

Equation (11) indicates the probability that the y trials that the candidate needed 

to answer the MC question correctly, were just a matter of chance. The RGS, which is 

the expectation value of the score S for the item, given the probability distribution P´, is 

now given by: 

 

𝑅𝐺𝑆 =
∑ 𝑆(𝑦) ∙ 𝑃′(1, 𝑦,

1
𝑚)

∞
𝑦=1

∑ 𝑃′(1, 𝑦,
1
𝑚)

∞
𝑦=1

 (12) 

Since the denominator is one this can be rewritten with equations (9) and (11) as 



 

𝑅𝐺𝑆 =
𝑤

𝑚
∙∑

1

𝑦

∞

𝑦=1

∙ (1 −
1

𝑚
)
𝑦−1

 (13) 

After summation over all items equations (5)-(7) can be used for calculating the 

normalised score, the cut score and the normalised cut score, respectively.  

4.3. Case 3: Item completion required (without replacement) 

In this case the player likewise has to pass each item correctly by adjusting the selection 

of alternatives until the right answer is given. Now, however, the player is supposed to 

learn from mistakes by remembering wrong answers given. Note that such learning 

strategy is not necessary related to learning content: the player could still be 

thoughtlessly taking decisions, while just taking into account what alternatives to 

exclude the next turn. Such strategy produces a repeated Bernoulli trial “without 

replacement”, which means that the wrong answers are no longer considered to be part 

of the set of alternatives that the player chooses from. Consequently the trials are no 

longer independent and the binomial distribution no longer applies. It has to be replaced 

with the hypergeometric distribution, which excludes replacement. The probability of 

having one correct answer in y trials (y>0) without replacement is now given by: 

 

𝑃 (1, 𝑦,
1

𝑚
) =

(
𝑚 − 1
𝑦 − 1

)

(
𝑚
𝑦)

 (14) 

The probability P’ of having a correct answer exactly in the y
th

 trial and not in the 

previous ones follows from induction:  

 
𝑃′ (1, 𝑦,

1

𝑚
) = 𝑃 (1, 𝑦,

1

𝑚
) − 𝑃 (1, 𝑦 − 1,

1

𝑚
) (15) 

This is valid because the chance of being successful in exactly the y
th

 trial is equal to the 

probability of being successful in the first y trials, minus the probability of being 

successful in the first (y-1) trials. Elaboration of equation (15) leads to a simple 

expression of P’ that is independent of y: 

 𝑃′ (1, 𝑦,
1

𝑚
) =

1

𝑚
 (16) 

This simple outcome is the result of the fact that the probabilities of drawing different 

sequences of trials with one success are equal (exchangeable sequences). The outcome 

can also be understood as follows: the probability of being successful in the first trial is 

1/m; being successful in the second trial requires failure in the first trial, which has 

probability (m-1)/m, and success in the second trial, which has probability 1/(m-1), 

rightly excluding the option chosen in the previous trial. The product of these 

probabilities yields 1/m. The same procedure holds for subsequent trials, all yielding a 

probability of 1/m.  

Although the probability may remain constant for each turn, the assigned 

performance S(y) given by equation (9) goes down with each turn. The RGS, which is 

the expectation value of the score S, given the probability distribution P´, is now given 

by: 



 

𝑅𝐺𝑆 =
∑ 𝑆(𝑦) ∙ 𝑃′(1, 𝑦,

1
𝑚
)𝑚

𝑦=1

∑ 𝑃′(1, 𝑦,
1
𝑚)

𝑚
𝑦=1

 
(17) 

With equations (9) and (16) this can be rewritten as 

 𝑅𝐺𝑆 =
𝑤

𝑚
∑

1

𝑦

𝑚

𝑦=1

 (18) 

After summation over all items, equations (5)-(7) yield the normalised score, the cut 

score and the normalised cut score. 

Calculated impact and comparison 

We will now analyse the impact of the approach on the RGS and the performance cut 

score, and make comparisons between the three different cases. For calculating the RGS 

and the cut score in a variety of cases we have implemented the analytical models in a 

SCILAB computer program (http://www.scilab.org).  

For reasons of simplicity we start our analysis with considering a one-item test 

with m alternatives and weight factor 1. Figure 1 shows for all three cases how the RGS 

of a single-answer item varies with the number of alternatives m.  

 

Figure 1 Normalised random guess score versus the number of alternatives for case 1, 

case 2, and case 3, respectively 

 

As can be derived from equation (8) for case 1 the RGS varies with 1/m. From 

equations (13) and (19), which hold for case 2 and case 3, the curves cannot be qualified 

so easily. The numerical computations reveal shapes very similar to the ones of case 1, 

be it with larger magnitudes. The RGS values of case 2 and case 3 are between 2 and 4 

times larger than in case 1. The RGS values of case 3 are the highest ones and are up to 

14% larger than those of case 2.  

The random cut scores are directly connected with the RGS (cf. equation (6)). 

Figure 2 displays the cut scores (which are identical with the normalised cut scores, 

since w=1).  



 

Figure 2 Relative cut score versus the number of alternatives m for each case 

 

The impact of randomness on cut score is substantial. For a 6-alternatives 

question (m=6) the cut scores are raised to 0.57 (which is 14% above the 0.50 

threshold) for case 1, and to 0.66 (+32%) and 0.69 (+37%), respectively, for the other 

cases. For m=12 the levels are still 0.54 (+8%), 0.61 (+21%) and 0.62 (+24%), 

respectively.  

Random scores in existing serious games 

For exploring the effects of randomness in serious gaming practice, we have analysed 

two existing serious games, each in the domain of higher education. The first one is a 

quiz-based game (CHERMUG), representing case 1; the second one is a competence-

based game (DIAGNOST), representing case 2 and case 3. 

6.1 The CHERMUG games (statistical methods) 

The CHERMUG games comprise a set of 14 online mini-games, which have been 

designed to support students as they learn about research methods and statistics. These 

contents are of special interest for students and professionals in social sciences and 

health. Each of the games requires typically 10 minutes to complete. The games were 

developed in the CHERMUG project (Continuing Higher Education in Research 

Methods Using Games, http://www.chermug.eu), funded by the Lifelong Learning 

Programme of the European Commission. The games are freely available at 

http://playgen.com/chermug. In the CHERMUG games players are confronted with a 

short, textual scenario related to obesity problems, whereupon they have to identify 

variables and variable levels, propose a statistical method, interpret statistical outcomes, 

and so on.  Figure 3 shows a screenshot of a CHERMUG game.  



 

Figure 3 Screen shot of a CHERMUG game: feedback is given 

 

An analysis of required decisions for three CHERMUG games is given in table 1. All 

navigational decisions were omitted. 

Table 1 Decision taking in 3 CHERMUG games 

Topic Nationality and 
Mediterranean 
food 

Gender and 
protein 
consumption  

Type of diet and 
weight loss 

Variables 7(2), 2(1) 6(2), 2(1) 5(2), 2(1) 

Levels of 
measurement 

4(1), 4(1) 4(1), 4(1) 4(1), 4(1) 

Study type 2(1) 2(1) 2(1) 

Hypothesis 2(1), 3(1), 3(1) 2(1), 3(1), 3(1) 2(1) 2(1) 3(1) 

Dataset 2(1), 4(1), 2(1) 
2(1), 2(1) 

2(1), 3(1)  
2(1), 2(1), 2(1) 

2(1), 3(1) 
2(1), 2(1), 2(1) 
2(1) 2(1) 2(1) 

Test selection 3(1) 2(1) 3(1) 

Interpretation 2(1), 2(1) 2(1), 2(1) 2(1), 2(1)  
 

All games comply to a standard format and mostly use single answer questions. 

The games are typically a case 1 example (no completion required): after each response 

a direct, corrective feedback is given. Special game features, e.g. based on hangman and 



three on a row, are applied as a motivator. As a result the number of questions to be 

answered depends on performance: weak students may need to answer more questions.  

6.2 The DIAGNOST game (psychological diagnostics) 

The DIAGNOST game is an online, competence-based game for psychology students to 

learn how to diagnose a client (Westera, Hommes, Houtmans, & Kurvers 2003). A 

screenshot is shown in figure 4. The game is an extended multimedia, branching story 

where the player adopts the role of psychologist and has to decide about the diagnostic 

approach and the clinical picture. This means: accessing resources, making interviews 

while asking the relevant questions, selecting relevant topics, decide on hypotheses, 

decide on psychological testing methods, analyse test results, drawing conclusions, 

composing validated advice, etcetera. The study load is about 3 hours. The game is used 

by students of the psychology master of science programme of the Open University of 

the Netherlands.  

 

Figure 4 Screen shot of the Diagnost game, during a video interview 

 

In accordance with established diagnostic methodology, the game is composed 

of 4 stages, each of which comprises a limited set of tasks. A decision analysis 

excluding navigation has yielded the following pattern (table 2). 

Table 2 Decision taking in DIAGNOST 

Phases Task Decisions 

Intake Preparation of intake interview 7(5) 

Intake interview n/a 

Help question definition 7(5) 

Problem 
analysis 

Interview situation analysis n/a 

Indentify research questions 11(4) 

Explanation  Specify hypotheses 9(2), 12(10), 6(2), 3(1) 

Specify test methods 9x3(1), 34x4(1), 2x4(2), 



7x5(1), 6(1), 3x6(2), 8(2) 

Interpret measurement results 7x2(1), 3(1), 3(2), 2x4(2), 
5(2), 6(2), 2x8(4) 

Answer research questions 2(1), 3x4(2), 4(3), 5x5(3), 
6(3), 6(4), 8(4) 

Advice  Answer help questions 12(6) 

Feedback interview n/a 
 

The game frequently offers multiple-answer questions. The required number of 

answers k (cf. equation (1)) was always given beforehand, whereby equation (1) holds. 

We omitted decision taking in the interviews, because in contrast with answering MC 

questions decisions to view a video are irreversible. Also we excluded navigational 

decisions. For each of the remaining decisions the game requires completion, which 

makes it an example of case 2 and case 3. In extreme cases (e.g. when decision taking 

takes too long), the game drops the completion requirement and provides the correct 

answers.  

Simulating random game play 

We have used the data of these games as input for a Monte Carlo simulation. The three 

CHERMUG games were combined into one game session. Random players were 

simulated according to the case 1 regime. In this simulation all CHERMUG items were 

given the same weight: wi =1, thereby neglecting any content-related issues. At 10,000 

iterations the results were stable, variations were well within 0.1 per cent across 

multiple repetitions. Figure 5 displays the normalised frequency distribution of the 

relative scores for the 10,000 CHERMUG simulations; the normalised measures were 

used for reasons of convenience. 

 

 

Figure 5 Distribution of random scores for 10,000 CHERMUG simulations 

From figure 5 it can be read that the random score contributions have a substantial 

magnitude. The mean of the distribution is 0.414, explaining 41.4% of the score 

obtained. This mean value was found to be within 0.1 per cent of the RGS value that 

was calculated with equation(8), which confirms the consistency of the approach. The 

spread of the frequency distribution (standard deviation =0.07) reveals substantial 



variability across different random runs: the coefficient of variation, which is the 

relative standard deviation (standard deviation divided by the mean), is given by 0.16. 

According to equation (6) the variability of score as a result of randomness (RSG) 

directly translates into a variability of the cut score (the cut score is linearly related via 

0.50*RSG, cf. equation(6)). Overall it can be concluded that in the CHERMUG games 

the disturbing effects of randomness are substantial as they explain up to 41% of the 

performance (not even taking the variability into account: standard deviation of 7%). 

Randomness raises the normalised cut score to a high level of 0.71 (which is 41% up).  

 

Likewise, the DIAGNOST game was simulated. First we let the simulated 

players adopt a case 2 strategy (thoughtless play: random choices with replacement). 

Figure 6 displays the normalised frequency distribution of the scores for 10,000 

DIAGNOST iterations. Again uniform weight functions (w=1) were used. From figure 

6 it can be read that the random score contributions have a substantial magnitude.  

 

Figure 6 Distribution of random scores for 10,000 DIAGNOST simulations (case 2: 

completion with replacement) 

The mean of the distribution is 0.415, which is within 0.1 per cent of the calculated 

RGS, cf. equation(13). It explains 41.5% of the score obtained. It should be noted that 

this value appears to be much higher than the average random success score of the set of 

items in the DIAGNOST case (cf. equation(8)), which is only 23.0%. Apparently, the 

game play mode that requires item completion, either with or without replacement, 

almost doubles the overall RGS score. The spread of the frequency distribution 

(standard deviation =0.03) reveals some variability across different random runs: the 

coefficient of variation, which is the relative standard deviation (standard deviation 

divided by the mean), is given by 0.08. The disturbing effects of randomness in the 

DIAGNOST game are comparable with those in the CHERMUG games. They explain 

up to 41% (excluding the effects of the standard deviation of 3%) of the performance. 

The randomness raises the cut score (ratio) to a high level of 0.71 (which is 41% up).  

Similar results were found when the simulated players adopted a case 3 strategy 

(remembering incorrect decisions: random choices without replacement). Figure 7  

shows the case 3 frequency distribution.    



 

Figure 7 Distribution of random scores for 10,000 DIAGNOST simulations (case 3: 

completion without replacement) 

 

The mean of the distribution is 0.414, which is within 0.1 per cent of the calculated 

RGS, cf. equation(18). It explains 41.4% of the score obtained. The standard deviation 

of the frequency distribution is 0.07, which is more than twice the spread in case 2. The 

coefficient of variation, which is the relative standard deviation (standard deviation 

divided by the mean), is given by 0.16. It means that the variability of random score in 

case 3 is twice the variability of random score in case 2. 

Discussion and conclusion 

The purpose of this study was to address the following research questions: 

(1) How can we formally describe the effects of random game play on the player´s 

performance score?  

(2) What is the magnitude of the effects of random game play? 

(3) What is the impact of random game play in practice? 

We have addressed research question (1) by developing and testing an analytical 

model that describes the influence of random effects on the player’s performance score. 

The model covers two types of decision taking: no item completion required (case 1), 

and item completion required (case 2, case 3). For required item completion we have 

identified two different strategies of random decision taking: in case 2 players are 

supposed to use a strategy of random selection with replacement, while in case 3 they 

use a strategy of random selection without replacement. In all cases we were able to 

derive analytical expressions for the random guess scores (RGS) and the resulting cut 

scores.  

We found the RGS for a single-answer question to be different for each case. 

Obviously, in case 1 the RGS is inversely related to the number of alternatives, which 

produces a hyperbolic curve. The RGSs in case 2 and case 3 were found to display 

similar relationships, but they were up to 3 to 4 times larger. Normalised values 

typically range from 0.10 up to 0.70, which signifies a substantial impact. Case 3 offers 

a slightly higher RGS than case 2. This can be explained by the fact that case 2 (with 

replacement) corresponds with a memory-less strategy, while players who adopt a case 

3 random strategy (no replacement) never make the same mistakes again and thus will 

demonstrate higher performances.  



Also, we have studied the impact of randomness in two existing serious games 

(CHERMUG and DIAGNOST). Monte Carlo simulation of random game play 

confirmed the substantial impact of randomness on score. Random guess scores were 

found to be around 0.41 for all cases. This agreement between the three cases is 

deceptive: it appears to be pure coincidence. The simulation was tested for a wider 

variety of (hypothetical) game configurations and showed large differences between 

calculated random guess scores. By coincidence the games’ branching profiles turned 

out to be very similar, yielding very similar results for the random guess scores. The 

high value of the random guess score (0.41) is the result of many low-order items (small 

m) that are present in the CHERMUG decision profile. When game play requires item 

completion (e.g. DIAGNOST) the overall RGS score appears to double as compared 

with the non-completion case. The spread of the random scores is substantial and varies 

between different games (case 1 and case 2) and different strategies (case 2 and case 3), 

showing a coefficient of variation up to 0.16. This affects the reliability of observed 

performances even more. Our study demonstrates that randomness in game play 

produces a non-negligible effect, the size of which depends on the types of decisions to 

be taken in the game. Because of the accumulative nature of scores, the effects of 

randomness don’t fade at large numbers of items. The main conclusion based on these 

observations is that indicators of player performance and progression as derived from 

the players actions and decisions in the game may be highly inaccurate and unreliable as 

a result of randomness.  

The model has some limitations though. First, the model assumes that players 

randomly select their decisions without bothering about the content. In fact, this is 

exactly what constitutes the RGS. But in practice players will be likely to balance 

different alternatives by looking into the contents and make an educated guess. Such 

content-related guessing, which can be quite instructive, is additional to randomly 

guessing. It isn’t covered by the model. Hence the RGS sets a lower bound of 

randomness. Second, we have based the RGS on the combinatorial statistics of multiple 

choice questions. However, there are alternative methods for determining the RGS, 

either based on the content-related quality of the decisions or derived from the score 

distribution of the community of users (Brennan 2006). Third, the model assumes that it 

is possible to unambiguously determine the pattern of decisions that a player has to 

make in the game. This isn’t always straightforward. Game sessions may display a large 

variability across different game runs and across different players, both with respect to 

the number of decisions to be taken, the type of decisions to be taken and the boundary 

conditions that hold. To some extent different runs of the same game may appear 

difficult to compare. Fourth, the model starts from the idea that decisions are either right 

or wrong. However, as is the case in everyday life, the boundaries between correct and 

wrong in a game are often blurred, or at best conditional. Some choices may be 

permitted, but unnecessary. Some decisions will only be correct if they are preceded or 

followed by a sequence of other decisions or achievements. Also, players may 

deliberately make unfavourable decisions simply because they want to try out things in 

the game and see what happens. Reverting to previous decisions may be a valuable and 

productive learning experience. In principle the decisions linked with navigation should 

be excluded, but often navigational decisions are directly related to the content of the 

game and make up an essential part of the learning experience. Hence, it may 

sometimes be difficult to judge the significance of a decision and assign a simple right 

or wrong. Fifth, the emphasis of our model on performance scores may disregard the 

importance of learning. Players who have a goal orientation toward performance rather 

than learning aim to demonstrate their competence to others and receive positive 



evaluations (high scores) (Dweck 1986; Shute et al. 2009). As a consequence, they are 

afraid of making mistakes, and tend to avoid or withdraw from complex tasks. Players 

with a learning orientation, however, show persistence in the face of failure, and display 

readiness of using more complex learning strategies to master the task (Farr, Hofmann, 

& Ringenbach 1993). This suggests that it may be wise to be reserved with using game 

score as a motivator for players, but use the score system as a concealed mechanism for 

triggering feedback. In any case player achievements have to be judged.  

In all cases the assessment of a player’s behaviours and performances in a 

serious game remains an essential component. We have demonstrated the large impact 

of randomness on the assessment performance, revealing RGSs increased by up to 41 

per cent. In a practical context the impact may even be more severe, because student 

score ranges are seldom uniformly distributed between 0% and 100%, but show sharp 

bell-shaped distributions. E.g. the distribution of student marks on a 1-10 interval scale 

in pre-university schools shows an average score of 6.8 with a standard deviation of 

only 0.9 (Nuffic 2006). Consequently, a random effect on score of only a few per cent 

will have a much larger practical impact. 
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