
Research Article
RAGE Architecture for Reusable Serious
Gaming Technology Components

Wim van der Vegt,1 Wim Westera,1 Enkhbold Nyamsuren,1

Atanas Georgiev,2 and Iván Martínez Ortiz3

1Open University of the Netherlands, Valkenburgerweg 177, 6419 AT Heerlen, Netherlands
2Sofia University “St. Kliment Ohridski”, Boulevard Tzar Osvoboditel 15, 1504 Sofia, Bulgaria
3Complutense University of Madrid, Avenida de Séneca 2, 28040 Madrid, Spain

Correspondence should be addressed to WimWestera; wim.westera@ou.nl

Received 8 December 2015; Revised 10 February 2016; Accepted 2 March 2016

Academic Editor: Michael Wimmer

Copyright © 2016 Wim van der Vegt et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

For seizing the potential of serious games, the RAGE project—funded by the Horizon-2020 Programme of the European
Commission—will make available an interoperable set of advanced technology components (software assets) that support game
studios at serious game development. This paper describes the overall software architecture and design conditions that are needed
for the easy integration and reuse of such software assets in existing game platforms. Based on the component-based software
engineering paradigm the RAGE architecture takes into account the portability of assets to different operating systems, different
programming languages, and different game engines. It avoids dependencies on external software frameworks and minimises code
that may hinder integration with game engine code. Furthermore it relies on a limited set of standard software patterns and well-
established coding practices. The RAGE architecture has been successfully validated by implementing and testing basic software
assets in four major programming languages (C#, C++, Java, and TypeScript/JavaScript, resp.). Demonstrator implementation of
asset integration with an existing game engine was created and validated. The presented RAGE architecture paves the way for
large scale development and application of cross-engine reusable software assets for enhancing the quality and diversity of serious
gaming.

1. Introduction

The potential of nonleisure games (serious games) in indus-
try, health, education, and the public administration sectors
has been widely recognised. An increasing body of evidence
is demonstrating the effectiveness of games for teaching and
training [1]. While instructional scientists consider motiva-
tion as a main driver for effective learning [2–5], games are
capable of amplifying the players’ motivation by hooking
and absorbing them in such a way that they can hardly stop
playing [6]. This motivational power of games is ascribed to
their dynamic, responsive, and visualised nature, which goes
alongwith novelty, variation, and choice, effecting strong user
involvement and providing penetrating learning experiences
[6]. In addition, serious games allow for safe experimentation
in realistic environments, stimulate problem ownership by

role adoption, and allow for learning-by-doing approaches,
which support the acquisition of tacit and contextualised
knowledge [7]. Nevertheless, the complexity of serious game
design may hamper the games’ effectiveness [8]. In particular
the subtle balance between game mechanics and pedagogical
power is not self-evident [9]. Also, various authors [1, 10] note
thatmany studies fail to evaluate the educational effectiveness
of serious games in a rigorous manner and they call for
more randomised controlled trials (involving comparisons
between an experimental group and a control group) for
increased scientific robustness. Still, the potential of games
for learning is widely recognised, stimulating serious game
development as a new branch of business.

For various reasons, however, seizing this potential has
been problematic. The serious game industry displays many
features of an emerging, immature branch of business: being

Hindawi Publishing Corporation
International Journal of Computer Games Technology
Volume 2016, Article ID 5680526, 10 pages
http://dx.doi.org/10.1155/2016/5680526

2 International Journal of Computer Games Technology

scattered over a large number of small independent play-
ers, weak interconnectedness, limited knowledge exchange,
absence of harmonising standards, a lot of studios cre-
ating their localised solutions leading to “reinventing the
wheel,” limited specialisations, limited division of labour, and
insufficient evidence of the products’ efficacies [11, 12]. Still,
conditions for a wider uptake of serious games are favourable.
PCs, game consoles, and handheld devices have become low-
priced commodities as are to a lesser extent advanced tools for
game creation and the associated graphics design and media
production.

In order to enhance the internal cohesion of the serious
game industry sector the RAGE project (http://rageproject
.eu/), which is Europe’s principal research and innovation
project on serious gaming in the Horizon-2020 Programme,
makes available a diversity of software modules (software
assets) for developing serious games easier, faster, and more
cost-effectively. The pursued software assets cover a wide
range of functionalities particularly tuned to the pedagogy of
serious gaming, for example, in player data analytics, emo-
tion recognition, stealth assessment, personalisation, game
balancing, procedural animations, language analysis and
generation, interactive storytelling, and social gamification.
Game developers could then simply add the required assets
to their project without the need to do all the programming
themselves. For example, the stealth assessment asset would
allow the game development team to easily incorporate diag-
nostic functionality that provides metrics for the progressive
mastery of knowledge and skills, based on the tracking and
processing of the players’ behavioural patterns in the game.

Importantly, the creation of the game software assets
is not an isolated technical endeavour, but instead it is
positioned as a joint activity of multiple stakeholders rep-
resented in the RAGE consortium. In the consortium com-
puter scientists and IT developers are working together with
serious game developers, educational researchers, education
providers, and end-users to make sure that the new technol-
ogy components are practical and usable and create added
pedagogical value. To this end the architecture presented in
this paper is used for supporting the easy integration of assets
in a set of serious games that will be developed in the project.
The games and the assets included will be empirically tested
for their effectiveness in large scale pilots with end-users.
Hence, one of the major technical challenges of RAGE is
to ensure interoperability of the software assets across the
variety of game engines, game platforms, and programming
languages that game studios have in use.The incorporation of
the software assets should be as easy as possible (e.g., “plug-
and-play”), without enforcing specific standards or systems as
to avoid principal adoption barriers. In addition, the software
assets should allow for being grouped together into more
complex aggregates, for example, combining an emotion
recognition asset with a game-balancing asset. That is, the
assets should comprise a coherent, component-based system
that supports data interoperability between its elements.

This paper takes a technical perspective by describing
and validating the RAGE software architecture that aims
to accommodate the easy integration and reuse of such
interoperable software assets in existing game platforms.

The RAGE architecture particularly addresses the structure
and functioning of client-side assets. Since exactly client-side
assets are supposed to be fully integrated in the game engine,
noncompliance issues of assets are likely to occur client-
side. This paper will explain the basic requirements and the
proposed solution. It presents the proofs of concept that have
been created for validating the RAGE architecture in four
different programming languages, and it describes how the
concrete technical issues encountered in these proofs were
overcome.

2. Related Work

There are various existing efforts in promoting reusability
in both serious games and leisure games. The Unity Asset
Store (https://www.assetstore.unity3d.com/) is an example of
a successful online marketplace for game objects. Most of
the objects are media objects (e.g., terrains, audio, buildings,
andweapons), but an increasing number of softwaremodules
(e.g., analytics, cloud backend, and game AI) are becoming
available. Unfortunately,most of the software objects can only
be reused in the Unity game engine. Various other online
platforms offer reusable game objects, for instance, the Guru
asset store (https://en.tgcstore.net/), Game Salads (http://
gshelper.com/), GameDev Market (https://www.gamedev-
market.net/), Unreal Marketplace (https://www.unrealen-
gine.com/marketplace), and Construct 2 (https://www.scir-
ra.com/store), but their main focus is on user-interface
objects and templates.

At a more abstract level Folmer [13] proposed a reference
architecture for games. The architecture consists of several
layers, such as game interface layer and domain specific
layer, and it identifies reusable components within each layer.
A similar idea proposed by Furtado et al. [14] describes a
software product line-based approach for creating reusable
software modules specific to a particular (sub)domain of
games. These modules include domain specific reference
architectures and languages. The current paper, however,
is little concerned with defining a reusability framework
for the entire process of game development. Instead, it
proposes a “reference architecture” for a particular niche
within serious game development that covers enhanced
pedagogical functionality. Consequently, while attempting to
simplify the reuse of pedagogical components, the RAGE
architecture interferes as little as possible with established
game development processes.

A recent reusability framework targeting serious games
[15, 16] relies on a service-oriented architecture (SOA).
Within this framework, domain independent features com-
monly used in serious games are encapsulated into com-
ponents and implemented as services. SOA offers several
advantages such as decoupling from implementation details
and a high degree of reusability. However, the SOA approach
goes with several limitations, for instance, the require-
ment of being constantly online, diminished flexibility such
as customisation and configuration of services by service
consumers, reduced system performance due to additional
overheads associated with SOA, and network calls.

International Journal of Computer Games Technology 3

A more versatile reference architecture is needed to
ensure seamless interoperability of the software assets across
different game engines, game platforms, and programming
languages, while the limitations of SOA should be avoided as
much as possible.

3. Starting Points

3.1. The Asset Concept. The idea of making available a set of
software assets seems to neglect the fact that the productive
reuse of software requires the software to be complemented
with installation guides, metadata, product manuals, tuto-
rials examples, documentation, and many other things. For
describing these elements we will comply with the W3C
ADMS Working Group [17] by referring to the term “asset.”
Assets are not limited to software but are considered abstract
entities that reflect some “intellectual content independent
of their physical embodiments” [17] or even more abstractly,
an asset would be “a solution to a problem” [18]. Not every
asset includes software: indeed, the Unity Asset Store offers a
variety of solutions, either media assets, such as 3D-objects,
audio, textures, or particle systems, or software assets such as
editor extensions, game AI, and physics engines.

The RAGE assets discussed in this paper are software
assets. They may contain either a source code file or a com-
piled programfile andmay contain various other artefacts (cf.
Figure 1).

The software artefact inside the asset is called “Asset
Software Component.” For being able to retrieve an asset
from a wide variety of assets that are stored in an asset
repository (the RAGE asset repository), it contains machine-
readable metadata. In addition to keyword classifiers and
asset descriptions the metadata include information about
versions, asset dependencies, and programming language
used among other things. The asset may include various
additional artefacts that are not to be compiled (tutorials,
manuals, licences, configuration tools, authoring tools, and
other resources).While the constituents of the asset are stored
separately in the RAGE repository, the asset can be packaged
for distribution.

In the rest of this paper we will interchangeably use the
term “Asset Software Component” and the term “asset” (as a
shorthand notation) for indicating the software module that
is to be linked or integrated with the game.

3.2. Basic Requirements. For being able to fulfil the ambition
of theRAGEproject to create an interoperable set of advanced
game technology assets that can be easily used by serious
game studios we have expressed the following basic require-
ments.

3.2.1. Interoperability between Assets. Since game developers
may want to group multiple assets into more complex
aggregates, data storage of assets to be used in their games
and data exchange between assets should be well-defined.

3.2.2. Nomenclature. When creating a new asset, asset devel-
opers should not replicate functionalities of existing assets

but instead should be able to exploit these. This requires
a consistent approach to nomenclature of variable names,
objects, andmethods to be used across the whole set of assets,
so that correct calls and references can be made.

3.2.3. Extendibility. The architecture should be robust over
extending the set of assets with new assets. Developers may
want to create new assets and add these to the existing set of
assets. For allowing new assets to interact with existing ones,
the interoperability conditions should be preserved.

3.2.4. Addressing Platform and Hardware Dependencies. Dif-
ferent hardware (e.g., game consoles) and operating systems
may require different technical solutions. Browsers, actually
the pairing of browsers and operating systems, display an
even wider diversity with respect to browser brands, settings,
and versions. This suggests that the programming for web
browsers should be conservative as to avoid browser version
issues as much as possible. Hence, direct access to the game
user interface and/or operating system should be avoided.

3.2.5. Portability across Programming Languages. Using only
well-established software patterns in RAGE would increase
the portability as there will be valid existing code available
from the start. Nevertheless, portability across different
programming languages may be affected by the different
nature and execution modes of the supported languages,
for instance, interpreted languages such as JavaScript versus
compiled languages as C++, C#, and Java. Also multithread-
ing versus single threading could hamper code portability.

3.2.6. Portability across Game Engines. The implementation
of an asset in a supported programming language should
be portable across different game engines and possibly even
across hardware platforms and operating systems as much as
possible. For this it is important to rely on the programming
language’s standard features and libraries to maximise the
compatibility across game engines. Assets could thus delegate
the implementation of required features to the actual game
engine, for example, the actual storage of run-time data: as
the game engine knows where and how data can be stored,
assets could delegate the actual storage operation to the game
engine and need not have their own stores.

3.2.7. Minimum Dependencies on External Software Frame-
works. The usage of external software frameworks (such as
jQuery or MooTools for JavaScript) should be avoided as
much as possible because of their potential interference with
the game engine code. Also namespace conflicts may readily
occur when external frameworks were used.

3.2.8. Quality Assurance. For preserving the integrity of an
ever-growing systemof assets basic quality assurance require-
ments will be needed. With respect to coding RAGE assets
require a consistent rather than mandatory coding style and
expect documentation on class level or method level in order
to accommodate debugging and maintenance. The inclusion
of well-established software patterns and compliance with

4 International Journal of Computer Games Technology

“asset”
Asset

“component”
Asset Software Component

Metadata

Manual Other resources

“component”
Authoring

Source code

Figure 1: Exemplary layout of a RAGE asset.

(subsets of) existing standards in order to minimise over-
heads should have priority. Namespaces (or modules) should
be used to prevent name conflicts between RAGE assets and
game engine code.

3.2.9. Overall Simplicity. Software complexity should be
avoided as to preserve practicability and maintainability.
Preferably, assets should address only core functionality,
which is in accordance with good practices of software
development. Therefore, as a general starting point, the
architecture and the integration points should be as simple
as possible.

4. Component-Based Design and Development

Since RAGE assets are positioned as being used as reusable
software components (plug-and-play), we adopt a com-
ponent-based development approach (CBD) [19, 20]. In
accordance with CBD, the RAGE asset architecture defines
a component model for creating a reusable asset.The compo-
nent model conforms to common norms of CBD, which are
summarised as follows:

(i) A component is an independent and replaceable part
of a system that fulfils a distinct function [20, 21].
Following this norm, it is assumed that an asset
provides a game developer with access to a concrete
functionality that produces added value. For RAGE
this added value will ideally (but not exclusively) be
within the context of learning and teaching.

(ii) A component provides information hiding and serves
as a black box to other components and technologies
using it [22, 23]. In accordance with this norm a game
developer does not need to know how a particular
functionality was implemented in the asset.

(iii) A component communicates strictly through a prede-
fined set of interfaces that guard its implementation
details [20, 21, 24]. Within the context of RAGE, it
is assumed that a minimal intervention from a game
developer is needed to integrate assets with a game
engine.

Various existing CBD frameworks are available such as
Enterprise JavaBeans [25] and CORBA [26]. However, we
have chosen not to use these for several reasons. Although
these frameworks simplify component integration and man-
agement, cross-platform support is still an issue. For example,
Enterprise JavaBeans is limited to the Java platform. While
CORBA is a language independent framework, mapping
between different languages using an interface-definition
language remains problematic. More critically, these frame-
works are overly general and complex, which makes them
unsuitable for addressing needs specific to the domain of
serious game development. For example, game engines are
de facto standard platforms for component control and
reusability in game development, which creates a direct
conflict with EJB or CORBA. For these and other reasons,
existing CBD frameworks find very limited adoption in game
development. RAGE will offer a less centralised approach by
including a lightweight control component in the form of an
AssetManager that is designed to complement game engines
rather than take over their functionalities.The AssetManager
is discussed in more detail later in this paper.

5. RAGE Architectural Design

5.1. Client-Side Assets versus Server-Side Assets. Assets can be
positioned both client-side and server-side. Figure 2 sketches
the general layout of an asset-supported game system.

On the client-side the player has access to a run-time
game (game engine). The game may incorporate client-side
assets that provide enhanced functionality. On the server-side
a game server may be supported by server-side assets. Server-
side assets may either be integrated with the game server or
reside on remote servers.

Client-side assets should be preferred when frequent
and direct interactions with the game engine on the local
computer are required or when results should be imme-
diately available. As a general guideline any processing
that can be done client-side, for example, the processing
of temporary, local data, should in fact be done client-
side, as to reduce external communications as much as
possible. However, when extensive processing is required, for

International Journal of Computer Games Technology 5

Game server

Server-side
asset

Server-side
asset

Server-side
asset

Client-side
asset

Game engine

Client-side
asset

Client-side
asset

Figure 2: Distributed architecture of client-side assets and server-
side assets supporting a game.

example, for speech recognition, a server-side asset would be
appropriate in order to avoid poor game performance, for
example, reduced frame rate or reduced game responsiveness.
Obviously, assets that collect and process population data
(learning analytics) and assets that require real time synchro-
nisation acrossmultiple remote players need to be server-side
as well.

Communications between the game engine and the
various servers are readily based on the http protocol, for
example, REST and SOAP. On the client-side all assets are
fully integrated with the game engine. This allows for direct
interface methods, thus avoiding the impediments of SOA.
The principal architectural challenges are on the client-side.
The easy and seamless integration of multiple collaborating
client-side assets aswell as the portability of assets acrossmul-
tiple game engines, platforms, and programming languages
requires a sound overall component architecture.This client-
side architecture will be elaborated in the next sections.

5.2. Programming Languages. Given the wide variety of
computer programming languages full portability of assets
across programming languages will not be possible. It is
inevitable to condense the spectrumof covered programming
languages to those languages that aremostly used for creating
games. This mainly holds for client-side code which is
highly dictated by the game engine used, while server-side
solutions are able to managemore diversity. For a start RAGE
assets will be developed supporting two core code bases:
C# (for desktop and mobile games) and HTML5/JavaScript
(for browser games), which are predominant products of
compiled languages and interpreted languages, respectively.
According to a survey among European game studios [27] the
most popular programming language is C# (71%), followed
by C++ (67%), JavaScript (48%), objective C (33%), and
Java (33%), which is quite similar to the latest Redmonk
programming languages rankings [28]. The growth of C#
has accelerated significantly since 2014, when Microsoft
released its .NET core framework as open source, supporting
any operating system and pushing the multiplatform nature
of C#. Major game engines or multiplatform tools (e.g.,

Unity/Xamarin) use C# as their core language. C++ is still
being used a lot, but it is more complex than C# or Java and
often relies on platform-dependent constructs. With respect
to browser-based games HTML5/JavaScript is considered
a de facto standard. However, for overcoming the lack
of strictness of JavaScript the RAGE project has adopted
TypeScript (http://www.typescriptlang.org/) instead as the
primary development language, which directly translates into
JavaScript. TypeScript is used as a superclass of JavaScript that
adds static typing, which can be used by integrated develop-
ment environments and compilers to check for coding errors.

5.3. The Asset Software Component’s Internal Structure.
Figure 3 displays theUMLclass diagramof theAsset Software
Component.

The classes, interfaces, and objects will be explained
below. Code and detailed documentation of the asset imple-
mentation proofs are available on the GitHub repository at
https://github.com/rageappliedgame. In particular we refer
the C# version (https://github.com/rageappliedgame/asset-
proof-of-concept-demo CSharp), the TypeScript version
(https://github.com/rageappliedgame/asset-proof-of-con-
cept-demo TypeScript), the JavaScript version (https://git-
hub.com/rageappliedgame/asset-proof-of-concept-demo Ja-
vaScript), the C++ version (https://github.com/rageapplied-
game/asset-proof-of-concept-demo CPlusPlus), and the Java
version (https://github.com/rageappliedgame/asset-proof-of-
concept-demo Java).

5.3.1. IAsset. The IAsset class, which is defined as an interface,
provides the abstract definition of theAsset SoftwareCompo-
nent including the fields, properties, and methods required
for its operations and communications.

5.3.2. BaseAsset. BaseAsset implements the set of basic
functionalities following the definitions provided by IAsset.
Moreover, BaseAsset exposes standardised interfaces that
delegate the storage of component’s default settings and run-
time data used by the component to the game engine.

5.3.3. ISettings. In accordance with the abstract definition
in the IAsset interface this interface ensures that every
Asset Software Component has the basic infrastructure for
managing a unique component ID, type, settings, version
information, and so forth.

5.3.4. BaseSettings. This class realises the ISettings interface.
It serves as a base class for the component’s configuration
settings.

5.3.5. IBridge. IBridge provides a standardised interface that
allows the component to communicate with external tech-
nologies such as the game engine or a remote service.

5.3.6. ClientBridge. This bridge realises the IBridge interface.
It mediates the direct communication from anAsset Software
Component to the game engine (for calls from the game

6 International Journal of Computer Games Technology

RAGE software architecture

RAGE Asset Software Component architecture

BaseAsset

“interface”
IDefaultSettings

“interface”
IDataStorage

“interface”
IAsset

Singleton instantiation

ClientBridge

“interface”
ISettings

BaseSettings

ClientAssetSettings ClientAsset

Game engineAssetManager

“interface”
IBridge

EventManager

Figure 3: Class diagram reflecting the internal structure of an Asset Software Component.

engine to the component mediation is not required). In
addition, ClientBridge may implement additional interfaces
like IDataStorage via polymorphism. Thus, the same bridge
object may provide the component with more specialised
functionalities, such as allowing it to retrieve default settings
from the game engine.

5.3.7. IDefaultSettings. The IDefaultSettings interface dele-
gates the management of component’s default settings to the
game engine. It can be used when configuration parameters
are stored in an external file rather than being hard-coded in
a BaseSettings subclass.

5.3.8. IDataStorage. The IDataStorage interface delegates the
management of run-time data used by the component to the
game engine. It can be implemented to access a local file or to
query a database.

5.3.9. AssetManager. The AssetManager takes over the man-
agement of multiple RAGE assets during both compile-time
and run-time. The game engine instantiates all necessary
assets and creates a singleton of the AssetManager that
simplifies the tracking of all instantiated assets. The Asset-
Manager covers the registration of the assets used by the
game, it locates the registered assets on request, and it offers
some common methods and events that may be used by the
assets, for example, requesting the name and type of the game
engine. The AssetManager is discussed in more detail in the
next section.

5.3.10. EventManager. Alternatively, indirect (multicast)
communication between various elements is also possible
via the EventManager that is initialised by the AssetManager.

The RAGE asset architecture can thus be summarised as
follows:

(i) The IAsset class defines the requirements for the
RAGE asset as a reusable software component.

(ii) For game developers the implementation details of
an Asset Software Component are hidden by a set of
interfaces.

(iii) Likewise, the implementation details of an external
technology are shielded for the Asset Software Com-
ponent by one or more interfaces, for example, the
storage of asset data in the game engine through
IDataStorage, which is implemented on a bridge.

(iv) The architecture supports various means of commu-
nication, for example, between assets, via the bridge
interfaces, or via the EventManager.

5.4. The AssetManager. As indicated above, the AssetMan-
ager is the coordinating agent for themanagement ofmultiple
RAGE assets. Obviously, the AssetManager complies with
the singleton pattern as only one coordinating agent is
needed. The AssetManager covers the registration of all
Asset Software Components that are used by the game
engine. For achieving this it should expose methods to query
this registration so that each Asset Software Component
is able to locate other components and link to these. For
avoiding duplicate code in each Asset Software Component
the AssetManager could also be the provider of basic services
that are relevant for all assets, such as the game engine’s
heartbeat, which indicates the game’s proper operation, or
user login/logout info for assets that need a user model. It
centralises the code and requires only a single interaction
point with the game engine. These data could be broadcast

International Journal of Computer Games Technology 7

and transferred to Asset Software Components that have sub-
scribed themselves for this event. Likewise, theAssetManager
could also coordinate the link between the Asset Software
Component and its data storage (which in fact requires
reference to the game engine, because an Asset Software
Component would not have storage capacity by itself).

5.5. Asset Communication. Asset Software Components need
to communicate with the outside world, for instance, for
receiving input from a user or game engine, for sending the
results of their calculations to the game engine, for making
web calls to query server-based services, or for linking up
with other RAGE assets. For allowing an Asset Software
Component (or its subcomponents) to communicate with
the outside world, well-defined interfaces are needed. A set
of standard software patterns and coding practices are used
for accommodating these communications. These include
the “Publish/Subscribe” pattern, the “bridge” pattern, Asset
Method calls, and web services (cf. Table 1).

The various communication modes will be briefly
explained below.

5.5.1. Asset Software Component’s Methods. Each Asset Soft-
ware Component may dynamically communicate with any
other asset in the environment. This capability is enabled
through registration by the AssetManager. An Asset Software
Component can query the AssetManager for other Asset
Software Components by referring to either a unique ID
and/or a class name. Once the requested Asset Software
Component is encountered, a direct communication can be
established between two components without the need for
further mediation by the AssetManager.

5.5.2. Bridges. For allowing an Asset Software Component
to call a game engine method the bridge software pattern
[29] is used, which is platform-dependent code exposing an
interface. The game engine creates a bridge and registers it
either at a specific asset or at theAssetManager.TheBaseAsset
then allows an Asset Software Component easy access to
either one of these bridges to further communicate with the
game engine. Overall, the bridge pattern is used to mediate
a bidirectional communication between the Asset Software
Component and the game engine while hiding game engine’s
implementation details. Additionally, polymorphism is used
by allowing a bridge to implement multiple interfaces. The
Asset Software Component may identify and select a suitable
bridge and use its methods or properties to get the pursued
game data.

5.5.3. Web Services. Communication through web services
assumes an online connection to a remote service. Web
services allow an Asset Software Component to call a ser-
vice from the game engine by using a bridge interface. In
principle, an Asset Software Component may not implement
the communication interface itself and instead may rely
on the adapters provided by the game engine [30]. Such
approach would remove the asset’s dependency on specific
communication protocols used by remote services, thereby

Table 1: Communication modes of client-side assets.

Client-side
requests Communication modes

Asset to asset

These communications require a once-only
registration of the Asset Software Component at
the AssetManager:
(i) Publish/Subscribe
(ii) Asset Method call

Asset to game
engine

With bridge:
(i) Web services (e.g., outside world)
(ii) Game engine functionality
(iii) Hardware, operating system
Without bridge:
(i) Publish/Subscribe

Game engine
to asset

(i) Asset Method calls
(ii) Publish/Subscribe

allowing a greater versatility of the asset. Within the RAGE
project automatic coupling with services will be supported
by using the REST communication protocol [31]. When a
service is unavailable, for example, when the game system is
offline, the interface should be able to receive a call without
processing it or acting on it. It is reminded here that server-
side communications as indicated before in Figure 2 can all
be implemented as web services.

5.5.4. Publish/Subscribe. Communications can also be ar-
ranged using the Publish/Subscribe pattern, which supports
a 1-N type of communication (broadcasting). An example
would be the game engine frequently broadcasting player
performance data to multiple assets. The RAGE architec-
ture allows for including Publish/Subscribe patterns where
both Asset Software Components and the game engine can
be either publishers or subscribers. The Publish/Subscribe
pattern requires an EventManager, which is a centralised
class that handles topics and events. The EventManager is
initialised by the AssetManager during its singleton instan-
tiation. Once initialised, either an asset or the game engine
can use the EventManager to define new topics, (un)subscribe
to existing topics, or broadcast new events. According to the
Publish/Subscribe design pattern, subscribers do not have
knowledge of publishers and vice versa. This allows an asset
to ignore implementation details of a game engine or other
assets. Additionally, this mode of communication is more
suitable for asynchronous broadcasting to multiple receivers
than the bridge-based communication, which realises bilat-
eral communications only.

5.5.5. Composite Communications. The basic patterns ex-
plained above enable composite communication modes,
which are composed of multiple stages. For instance, Asset
Software Components may use the game engine as an
intermediate step for their mutual communications, by using
bridges, web services, or the Publish/Subscribe pattern. Also
the AssetManager may act as a communication mediator.
Once registered at the AssetManager, an Asset Software
Component could use the AssetManager’s set of commonly

8 International Journal of Computer Games Technology

used methods and events in order to minimise the number
of the game engine interaction points. In many cases it is
more efficient to implement widely used functionality in the
AssetManager than implementing it in every individual asset.

6. Technical Validation

For the technical validation of the RAGE architecture a
basic software asset has been developed for all four of the
selected programming languages. This basic Asset Software
Component included all elementary operations and patterns,
for example, registration, save, load, and log. The assets
should meet the following test requirements:

(1) Once created, the Asset Software Components should
induce the creation of a single AssetManager, which
enables the components’ self-registration.

(2) The AssetManager should be able to locate Asset
Software Components and generate the associated
versions and dependency reports.

(3) Asset Software Components should be able to directly
connect through a method call.

(4) Asset Software Components should be able to call
game engine functionality. The bridge code between
the Asset Software Components and the game engine
should provide some basic interfaces, such as simple
file i/o and access to web services.

(5) The Publish/Subscribe pattern should allow Asset
Software Components to both broadcast and sub-
scribe to broadcasts, for example, transferring an
object.

(6) The system should support multiple interactions, for
example, a dialog system.

(7) The system should check for (default) settings and
their serialisation to XML (for C#) and should be able
to include default settings at compile-time.

Tested implementation of the basic asset in all four pro-
gramming languages can be found on GitHub (https://github
.com/rageappliedgame). All implementation proved to meet
the specified requirements. Yet, a number of language-
dependent issues were encountered (and solved) that deserve
further attention. In addition, the Unity game engine was
used as an integration platform for the C# asset version.
A number of engine dependent issues were identified and
solved as well.

6.1. Issues in C#

Characters. First, since Windows and OS X have differ-
ent directory separator characters, forward slash (/) and
backslash (\), respectively, portability fails. Problems can be
avoided, however, by using the Environment class in C# that
dynamically returns the correct separator rather than using
hard-coded separators. Second, the Mono version used in

Unity (v5.2) silently turns UTF-8 XML into UTF-16 during
parsing, leading to problems during deserialisation of version
info. This issue can be bypassed by omitting the parsing
procedure and directly serialising the XML files.

Debugging. First, Mono’s Debug.WriteLine method does not
offer a syntax format such as String.Format. In order to
obtain formatted diagnostic output messages during asset
development, the String.Formatmethodmust be used explic-
itly. Second, debugging in Unity needs a different format of
the debug symbol files generated during compilation with
Visual Studio. Mono provides a conversion tool for this.
Third, the pdb-to-mdb debug symbol converter of Unity
(v5.2) cannot convert debug symbols created byVisual Studio
2015. A workaround is using Visual Studio 2013 or patch and
recompile this utility. Finally, Mono and .Net display slight
differences in the method names that are used for diagnostic
logging.This problem can be solved easily by using the bridge
for supplying the actual logging methods.

Compilation. In Unity the assemblies with embedded
resources (i.e., RAGE Asset Software Components have their
version data and localisation data embedded) cannot be
compiled as upon compilation Unity automatically removes
the embedded resources. The resources can be compiled
with Visual Studio though, whereupon they can still be used
in the Unity engine.

6.2. Issues in TypeScript/JavaScript

Characters. TypeScript and JavaScript rely on using a forward
slash (/) directory separator on all platforms (Windows
uses the backslash but allows using a forward slash). As
TypeScript/JavaScript codewillmainly be used forweb-based
games and will not try to access local files, this issue will be of
little practical significance.

Interfaces. TypeScript implements interfaces but uses these
only at compile-time for type checking. The resulting
JavaScript is not capable of checking the existence of an
interface as such. For allowing the asset to select the bridge
to be used, the asset should instead check for the interface
method that needs to be called.

Settings. During deserialisation of JSON data into asset
settings JavaScript will only restore the data but will not
recreate the methods present in the class. As a consequence
computed properties will fail. Aworkaround is either to avoid
using themethods and/or the computed values or to copy the
restored data into a newly created settings instance.

6.3. Issues in Java

Characters. Because of the different directory separator char-
acters inWindows and OS X, forward slash (/) and backslash
(\), respectively, portability fails. Problems can be avoided by
using the File.separator field, which dynamically returns the
correct separator, instead of using hard-coded separators.

International Journal of Computer Games Technology 9

Properties. Java does not support the properties concept of
C# and TypeScript but relies on naming conventions instead
(get/set methods).

Default Values. Java has no standard implementation for
default value attributes. As a consequence default values have
to be applied in the constructor of the settings subclasses.

6.4. Issues in C+ +

Characters. Also in C++ portability across Windows and OS
X is hampered by the different directory separator characters.
Problems can be avoided by creating conditional code for
preprocessor directives that provide hard-coded separators
tuned to the platform of compilation.

Properties. C++ does not support the concept of properties.
Instead it relies on naming conventions (get/set methods).

Default Values. Like Java, C++ has no standard implementa-
tion for default value attributes, so default values have to be
applied in the constructor of the settings subclasses.

Singleton. During testing the new C++ 2013 singleton syntax
led to crashes in Visual Studio, so it had to be replaced with a
more traditional double-checked locking pattern.

Web Services. Although web service calls, for example, with
REST or SOAP, are a well-established approach to client-
server communications and other remote communications,
problems may arise because of slight semantic differences
on different platforms. For instance, the popular JSON data
format embedded in the web service protocols may suffer
from this ambiguity, in particular with respect to the symbols
of decimal separator, thousands separator, list separator,
quote, data-time formats, null versus undefined, character
encoding (e.g., UTF-8), prohibited characters in filenames,
the line feed, and carriage return. XML-converted data are
less sensitive to these issues.

7. In Conclusion

In this paper we have reported the design of the RAGE
architecture, which is a reference architecture that supports
the reuse of serious gaming technology components across
different programming languages, game engines, and game
platforms. An asset would offer a standardised interface that
can be directly implemented by a game engine (via the
bridge pattern) or it uses the asset’s event manager for a
Publish/Subscribe event. Proofs of concept in four princi-
pal code bases (C#, Java, C++, and TypeScript/JavaScript)
have validated the RAGE architecture. In addition, the C#
implementation of the test asset was successfully integrated in
theUnity game engine, which demonstrates the practicability
and validity of the RAGE asset architecture. The RAGE
project will now start to develop up to 30 dedicated serious
gaming assets and use these in customer-driven serious
games projects. RAGE will make these assets available along
with a large volume of high-quality knowledge resources on

serious gaming through a self-sustainable delivery platform
and social space. This platform aims to function as the single
entry point for different stakeholders from the serious gaming
communities, for example, game developers, researchers
from multiple disciplines, online publishers, educational
intermediaries, and end-users. RAGE thus aims to contribute
to enhancing the internal cohesion of the serious games
industry sector and to seizing the potential of serious games
for teaching, learning, and various other domains.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work has been partially funded by the EC H2020
project RAGE (Realising an Applied Gaming Ecosystem),
http://www.rageproject.eu/, Grant Agreement no. 644187.

References

[1] T. M. Connolly, E. A. Boyle, E. MacArthur, T. Hainey, and J. M.
Boyle, “A systematic literature review of empirical evidence on
computer games and serious games,” Computers & Education,
vol. 59, no. 2, pp. 661–686, 2012.

[2] J. M. Keller, “Development and use of the ARCS model of
motivational design,” Journal of Instructional Development, vol.
10, no. 3, pp. 2–10, 1987.

[3] J. M. Keller, “First principles of motivation to learn and e3-
learning,” Distance Education, vol. 29, no. 2, pp. 175–185, 2008.

[4] R. M. Ryan and E. L. Deci, “Self-determination theory and
the facilitation of intrinsic motivation, social development, and
well-being,” American Psychologist, vol. 55, no. 1, pp. 68–78,
2000.

[5] D. I. Cordova and M. R. Lepper, “Intrinsic motivation and
the process of learning: beneficial effects of contextualization,
personalization, and choice,” Journal of Educational Psychology,
vol. 88, no. 4, pp. 715–730, 1996.

[6] W. Westera, “Games are motivating, aren’t they? Disputing
the arguments for digital game-based learning,” International
Journal of Serious Games, vol. 2, no. 2, pp. 3–17, 2015.

[7] M. Polanyi, The Tacit Dimension, University of Chicago Press,
Chicago, Ill, USA, 1966.

[8] W. Westera, R. J. Nadolski, H. G. K. Hummel, and I. G. J. H.
Wopereis, “Serious games for higher education: a framework
for reducing design complexity,” Journal of Computer Assisted
Learning, vol. 24, no. 5, pp. 420–432, 2008.

[9] S. Arnab, T. Lim, M. B. Carvalho et al., “Mapping learning and
game mechanics for serious games analysis,” British Journal of
Educational Technology, vol. 46, no. 2, pp. 391–411, 2015.

[10] C. Linehan, B. Kirman, S. Lawson, and G. Chan, “Practi-
cal, appropriate, empirically-validated guidelines for designing
educational games,” in Proceedings of the ACM Annual SIGCHI
Conference on Human Factors in Computing Systems (CHI ’11),
pp. 1979–1988, ACM, Vancouver, Canada, May 2011.

[11] J. Stewart, L. Bleumers, J. Van Looy et al.,ThePotential of Digital
Games for Empowerment and Social Inclusion of Groups at Risk
of Social and Economic Exclusion: Evidence and Opportunity for

10 International Journal of Computer Games Technology

Policy, Joint Research Centre, European Commission, Brussels,
Belgium, 2013.

[12] R. Garćıa Sánchez, J. Baalsrud Hauge, G. Fiucci et al., “Business
Modelling and Implementation Report 2,” GALA Network of
Excellence for Serious Games, 2013, http://www.galanoe.eu.

[13] E. Folmer, “Component based game development-a solution
to escalating costs and expanding deadlines?” in Component-
Based Software Engineering, pp. 66–73, Springer, Berlin, Ger-
many, 2007.

[14] A. W. B. Furtado, A. L. M. Santos, G. L. Ramalho, and E. S. De
Almeida, “Improving digital game development with software
product lines,” IEEE Software, vol. 28, no. 5, pp. 30–37, 2011.

[15] M. B. Carvalho, F. Bellotti, J. Hu et al., “Towards a service-
oriented architecture framework for educational serious
games,” in Proceedings of the 15th IEEE International Conference
on Advanced Learning Technologies (ICALT ’15), pp. 147–151,
IEEE, Hualien, Taiwan, July 2015.

[16] M. B. Carvalho, F. Bellotti, R. Berta et al., “A case study on
service-oriented architecture for serious games,” Entertainment
Computing, vol. 6, pp. 1–10, 2015.

[17] M. Dekkers,Asset DescriptionMetadata Schema (ADMS), W3C
Working Group, 2013, http://www.w3.org/TR/vocab-adms/.

[18] Object Management Group, Reusable Asset Specification, Ver-
sion 2.2, 2005, http://www.omg.org/spec/RAS/2.2/.

[19] F. Bachmann, L. Bass, C. Buhman et al., Volume II: Technical
Concepts of Component-based Software Engineering, Carnegie
Mellon University, Software Engineering Institute, Pittsburgh,
Pa, USA, 2000.

[20] S. Mahmood, R. Lai, and Y. S. Kim, “Survey of component-
based software development,” IET Software, vol. 1, no. 2, pp. 57–
66, 2007.

[21] X. Cai, M. R. Lyu, K. F. Wong, and R. Ko, “Component-based
software engineering: technologies, development frameworks,
and quality assurance schemes,” in Proceedings of the 7th Asia-
Pacific Software Engineering Conference (APSEC ’00), pp. 372–
379, IEEE, Singapore, 2000.

[22] K. K. Lau and F. M. Taweel, “Data encapsulation in software
components,” in Component-Based Software Engineering, pp. 1–
16, Springer, Berlin, Germany, 2007.

[23] T. Wijayasiriwardhane, R. Lai, and K. C. Kang, “Effort estima-
tion of component-based software development—a survey,” IET
Software, vol. 5, no. 2, pp. 216–228, 2011.

[24] H. Koziolek, “Performance evaluation of component-based
software systems: a survey,” Performance Evaluation, vol. 67, no.
8, pp. 634–658, 2010.

[25] E. Roman, R. P. Sriganesh, and G. Brose, Mastering Enterprise
JavaBeans, John Wiley & Sons, 2005.

[26] S. Vinoski, “CORBA: integrating diverse applications within
distributed heterogeneous environments,” IEEE Communica-
tions Magazine, vol. 35, no. 2, pp. 46–55, 1997.

[27] G. L. Saveski, W. Westera, L. Yuan et al., “What serious game
studios want from ICT research: identifying developers’ needs,”
in Proceedings of the Games and Learning Alliance conference
(GALA ’15), Serious Games Society, Rome, Italy, December
2015.

[28] Redmonk programming languages rankings, 2015, http://red-
monk.com/sogrady/2015/01/14/language-rankings-1-15/.

[29] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Pearson
Education, 1994.

[30] B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and F.
Toumani, “Developing adapters for web services integration,”
in Advanced Information Systems Engineering, O. Pastor and J.
Falcão e Cunha, Eds., vol. 3520 of Lecture Notes in Computer
Science, pp. 415–429, Springer, Berlin, Germany, 2005.

[31] A. P. Sheth, K. Gomadam, and J. Lathem, “SA-REST: seman-
tically interoperable and easier-to-use services and mashups,”
IEEE Internet Computing, vol. 11, no. 6, pp. 91–94, 2007.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

