
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

RAGE reusable game software components and their

integration into serious game engines

Wim van der Vegt, Enkhbold Nyamsuren, Wim Westera

Open University of the Netherlands

(wim.vandervegt, enkhbold.nyamsuren, wim.westera)@ou.nl

Abstract. This paper presents and validates a methodology for integrating reusable

software components in diverse game engines. While conforming to the RAGE com-

ponent-based architecture described elsewhere, the paper explains how the interac-

tions and data exchange processes between a reusable software component and a

game engine should be implemented for procuring seamless integration. To this end, a

RAGE-compliant C# software component providing a difficulty adaptation routine

was integrated with an exemplary strategic tile-based game “TileZero”. Implementa-

tions in MonoGame, Unity and Xamarin, respectively, have demonstrated successful

portability of the adaptation component. Also, portability across various delivery

platforms (Windows desktop, iOS, Android, Windows Phone) was established.

Thereby this study has established the validity of the RAGE architecture and its un-

derlying interaction processes for the cross-platform and cross-game engine reuse of

software components. The RAGE architecture thereby accommodates the large scale

development and application of reusable software components for serious gaming.

Keywords: Serious game·reuse·software component·integration·game engine·

interoperability·RAGE

1 Introduction

Although games for learning have received attention from researchers and educators

for several decades, the uptake of these “serious games” in schools and corporate

training has been quite limited. Unlike the leisure game industry, which is an estab-

lished industry dominated by major non-European hardware vendors (e.g. Sony, Mi-

crosoft and Nintendo) as well as major publishers and a fine-grained network of de-

velopment studios, distributors and retailers, the serious game industry is scattered

over a large number of small independent studios. This fragmentation goes with lim-

ited interconnectedness, limited knowledge exchange, limited specialisations, limited

division of labour and an overall lack of critical mass [1,2]. Moreover, driven by the

successes of leisure games, quality standards of serious games as well as their produc-

tion costs tend to increase substantially, which raises barriers to serious game adop-

tion [3].
In 2014, the European Commission has designated serious games as a priority area

in its Horizon 2020 Programme for Research and Innovation. It envisions a flourish-

ing serious games industry that helps to address a variety of societal challenges in

education, health, social cohesion and citizenship, and at the same time stimulates the

creation of jobs in the creative industry sector. Funded by the Horizon 2020 Pro-

gramme, the RAGE project is a technology-driven research and innovation project

that will make available serious game-oriented software modules (software assets)

that game studios can easily integrate in their game development projects. Serious

games studios would then benefit from reusing state-of-the-art technologies, while

their development would become easier and faster, and upfront investments during

development would be reduced.

In the RAGE project up to 40 advanced software assets are anticipated. These as-

sets cover a wide range of functionalities particularly tuned to the pedagogy of serious

gaming, e.g. player data analytics, emotion recognition, stealth assessment, personali-

sation, game balancing, procedural animations, language analysis and generation,

interactive storytelling, social gamification and many other functions. One of the ma-

jor challenges of RAGE is to ensure portability of the software assets across the wide

diversity of game engines, game platforms and programming languages that game

studios have in use. In the game industry game engines are the focal point of reuse

[4]. They provide core libraries providing functionalities common to most games

(e.g., rendering, scripting, networking). To support reusability within specific genres

of games, game engines are supplemented with stores of plug-in “assets” [4]. These

stores mostly concentrate on reuse of 2D/3D models and animation scripts. In rare

occasions, software libraries with auxiliary functionalities are also available. For ex-

ample, the store for the Unity game engine offers assets for game data analytics

(https://www.assetstore.unity3d.com/). However, such libraries are bound to the ar-

chitecture of the target engine. Furthermore, there is a lack of assets with explicitly

pedagogical purposes.
RAGE has addressed these issues by devising a component-based architecture

[5,6] that preserves the portability of assets and that supports data interoperability

between the assets [7]. In [7] the principles and constituents of the RAGE asset archi-

tecture have been described in detail and proofs of concept were presented that

demonstrate its compliance with the following basic requirements: 1) minimal de-

pendencies on external software frameworks and 2) interoperability between assets,

and 3) portability of assets across different programming languages. This paper fo-

cuses on an additional requirement: the portability across different platforms, hard-

ware and game engines. For the validation an existing RAGE Asset is used, the Het-

erogeneous Adaptation Asset (HAT).

We will first summarise the main features of the RAGE architecture and the set of

communication modes it supports. Next, we will introduce the HAT asset and an ex-

emplary game that were used for investigating the asset integration. Thereafter we

will discuss the integration of the asset and the game and describe the principal asset

classes and the main interaction processes that are required for system integration.

Finally, we will discuss the portability of the HAT-asset to other game engines and

verify the portability to diverse delivery platforms.

2 The RAGE architecture

The RAGE asset architecture defines a component model (Figure 1) for creating a

reusable plug-and-play asset. The component model conforms to common norms of

Component-Based Development [5,6,7]: 1) a component is an independent and re-

placeable part of a system that fulfils a distinct function; 2) a component provides

information hiding and used as black box; 3) a component communicates strictly

through a predefined set of interfaces that guard its implementation details.

The RAGE architecture [7] distinguishes between server-side assets and client-side

assets. Remote communications of server-side assets with either the game engine

(client) or a game server are readily based on a service-oriented architecture (SOA)

using the HTTP-protocol (e.g. REST), which offers platform-independence and in-

teroperability among heterogeneous technologies. In contrast, client-side RAGE as-

sets are to be integrated with the game engine and are likely to suffer from incompati-

bilities. Therefore, the RAGE (client) asset architecture relies on a limited set of well-

established software patterns and coding practices aimed at decoupling abstraction

from its implementation. This decoupling facilitates reusability of an asset across

different game engines with minimal integration effort. Figure 1 displays the UML

class diagram of the RAGE asset architecture [7].

Fig. 1. Class diagram reflecting the internal structure of a client-side software asset.

First, the asset does not provide any functionality related to the game user interface as

to avoid platform-dependent code. The asset just provides processing functionality by

returning processed data to the game engine (e.g. calculating user performance met-

rics based on logged behaviours). Second, since various assets may be linked together

to express aggregates, a coordinating agent is needed: the Asset Manager, which is

implemented as a Singleton, is needed for registration of the assets. It exposes meth-

ods to query these registrations. Also, the Asset Manager centralises shared code that

is commonly used by multiple assets, such as the name and the type of the game en-

gine, or user login/logout info for assets that would need a user model. For such data,

the Asset Manager is the single interaction point with the outside game engine, and

thus avoids duplicating code. Third, for allowing an asset to call a game engine

method, the Bridge software pattern [8] is used, which is platform-dependent code

implementing an interface. Alternatively, the communications could use the Pub-

lish/Subscribe pattern [9,10] through the Event Manager, which is initialised by the

Asset Manager during its Singleton instantiation. Fourth, the asset offers basic capa-

bilities of storing configuration data (settings), be it delegated through the Bridge to

the game engine. Storage also includes localisation data (string translation tables),

version information and dependency information (dependency on other assets’ ver-

sions). Fifth, assets largely rely on the programming language’s standard features and

libraries to maximise the compatibility across game engines. Therefore, assets could

thus delegate the implementation of required features to the actual game engine, for

example the actual storage of runtime data.

3 Communications between assets and the game engine

For allowing an asset or its sub-components to communicate with the outside world

(e.g. with other assets, the game engine or a remote service), well-defined interfaces

are needed. The RAGE architecture support 4 different communication modes, which

are connected with asset registration and the use of RAGE architecture methods, the

use of game methods, using web services and using Publish/Subscribe events, respec-

tively. These modes will be summarised below are explained below at a generic level.

In section 6 we will provide the implementation details of asset registration, the reuse

of RAGE architecture methods and the reuse of game engine methods.

3.1 Communications with the Asset Manager and other assets

The Asset Manager has the central role in registering assets. Such registration is

needed, because for communication the game engine should be able to locate the

assets, as much as each asset should be able to locate other assets. Principal steps of

the registering process are:

 Asset creation

Upon execution the game engine creates the asset by calling its constructor.

 Locating or creating the Asset Manager

After its creation the asset tries to locate the Asset Manager. If no Asset Manager

instance can be found, it creates the instance as a Singleton.

 Asset self-registration
The asset registers itself at the Asset Manager by the name of its class. In return, it

receives a unique identifier, so that multiple instances of the same class can be kept

apart.

 Asset ID exchange

The unique identifier is then returned to the game engine for later use.

The Asset Manager provides an interface for querying this registration of assets. An

asset can also query the Asset Manager for other assets by their class names when

inter-asset communication becomes necessary.

3.2 Communications through a game method call

For allowing an asset to call a game engine method a Bridge [8] is used. The Bridge

includes platform-dependent code that implements one or more interfaces. The fol-

lowing actions are required:

 Bridge creation

The game engine creates a Bridge and registers it with either a specific asset or

with the Asset Manager. The asset can access its own Bridge or the Asset Manag-

er´s Bridge to further communicate with the game engine.

 Calling the game engine

Upon calling a game engine method, the asset would look for a suitable interface

from the Bridge, which then forwards the method call to the game engine.

 Receiving the response of game engine method

The game engine returns the method’s response to the Bridge, which forwards it to

the asset.

Overall, the Bridge pattern allows assets to call game engine methods while hiding

the game engine’s implementation details from the asset. Additionally, polymorphism

is supported by allowing a Bridge to implement multiple interfaces, or allowing an

asset to access multiple Bridges that implement different interfaces. The asset may

identify and select a suitable Bridge and use its methods or properties to get the pur-

sued game data.

3.3 Communications through a web-service call

The Bridge can also be used for the communications of client-side assets with remote

services through web services. Obviously, this also applies for client-side assets call-

ing server-side assets. The communication includes the following elements:

 Bridge creation

If the Bridge was not instantiated yet, the game engine should create it and make it

available to the asset.

 Using an adapter

The Bridge uses an Adapter [11] provided by the game engine, which thus removes

the dependency of the asset on specific communication protocols used by remote

services, thereby allowing a greater versatility of the asset.

 Sending a request

In turn the asset could send a request (e.g. load or save data) to the Adapter, which

is then to be translated to a suitable format (e.g. REST) and sent to the web service.

 Receiving a response

Eventually, the web service would return its response, which is then received and

processed by the asset.

Obviously, the communication with remote services assumes an online connection.

When a service is unavailable, e.g. when the game system is offline, the interface

should be able to receive a call without processing it or acting on it.

3.4 Communications through a Publish/Subscribe event

Communications can also be arranged using the Publish/Subscribe pattern, which

supports a 1-N type of communication (broadcasting). An example would be the

game engine frequently broadcasting player performance data, which could be re-

ceived by multiple assets.

 Creation of an Event Manager

An Event Manager is needed, which is a centralised class that handles topics and

events. It is initialised by the Asset Manager during its Singleton instantiation.

 Registration of an event

The game engine registers a publication event at the Event Manager, for instance

the broadcast of player performance data, or any other required state data from the

game.

 Subscription to the event

An asset that wants to use such data for further processing would subscribe to the

registered event.

 Receiving updates

Any publication or update of the event by the game engine will then be broadcast

by the Event Manager. The assets that have subscribed to the particular event will

receive the data and act upon it.

According to the Publish/Subscribe design pattern, subscribers do not have

knowledge of publishers and vice versa. This allows an asset to ignore implementa-

tion details of a game engine or other assets. The communication can go both ways:

asset and the game engine can be either publishers or subscribers. The Pub-

lish/Subscribe pattern of communication is more suitable for (asynchronous) broad-

casting to multiple receivers than the Bridge-based communication, which realises

bilateral communications only.

4 The Heterogeneous Adaptive Gaming asset (HAT)

The Heterogeneous Adaptive Gaming asset (HAT) can be used for real-time adapta-

tion of game features to player skills. The current version of the HAT asset supports

adapting game difficulty to player’s expertise using the CAP algorithm [12]. The CAP

algorithm is based on the Elo rating system [13] that was originally developed to dy-

namically calculate and match expertise levels of two chess players. Similar to the Elo

algorithm, CAP does not require pre-testing to estimate difficulty of items. Instead,

CAP is capable of on the fly estimation of item difficulty and player's expertise pa-

rameters. The CAP algorithm is successfully being used in a wide array of games

ranging from simple arithmetic games [14] to complex problem solving games such

as Mastermind [15].

The HAT asset assumes that a player plays through a sequence of one or more

game scenarios. The game delegates the choice of the scenarios to be played to the

HAT asset, which after each scenario adapts game difficulty to the player’s expertise

level. Quantitative ratings need to be assigned to both a player’s expertise or skills

level, and to the game scenarios’ difficulties. After each played scenario, the HAT

asset updates the player’s expertise rating by taking into account a Boolean value

indicating whether the player failed or succeeded in a scenario and the time needed by

the player to finish the scenario. If the player performed better than expected then the

expertise rating is increased, otherwise it is decreased. Based on the updated player’s

expertise rating, the HAT asset returns the most suitable difficulty level for the next

scenario to the game. For this decision, the HAT asset uses a prefixed probability

value indicating the probability that the player finishes the scenario successfully.

Based on previous research this probability threshold was set to 0.75, as to balance

the challenge provided by the game and player’s motivation to continue to play [12],

[16]. The player is initially assigned a low expertise rating and, therefore, will be

provided with easier scenarios. However, as the player improves by gaining expertise,

the expertise rating increases, and more difficult scenarios will be presented. Through

this iterative process, the HAT asset ensures that the player is always given a reasona-

ble amount of challenge even if the player gradually improves.

5 The TileZero game

The TileZero game (Figure 2) is a derivative of the popular turn-based board game

Qwirkle (released by MindWare, http://www.mindware.com). In recent years, Qwirk-

le has captured interests of educational researchers for its potential use in developing

children’s spatial, mathematical, and fluid reasoning skills [17]. The game contributes

to capacities to think logically and solve problems from different perspectives. It re-

quires from a player a strategic reasoning ability to form, compare and choose from

alternative combinations of moves. Finer grained skills include spatial manipulation

of tiles in mind, mental arithmetic of in-game scores, and tactical consideration of

other players' possible moves. The same considerations apply to the TileZero game.

As the game has simple mechanics and rules that are easy to implement and control, it

is a good candidate for testing the asset integration.

The mechanics of TileZero revolves around combining tiles into a sequence. Each

tile has a picture of a coloured shape. There are six distinct colours and six distinct

shapes resulting in 36 unique tiles. With three copies of each unique tile the total

number of playable tiles is 108. Tiles that have not been used yet, are kept in a bag,

and players cannot see them.

Fig. 2. A screenshot of the TileZero game against Hard AI Player.

TileZero can be played with two to four players. A match starts with three random

tiles put in a sequence on a board. Next, each player receives a set of six random tiles.

Once tiles are distributed, players start taking turns. During their turn, the players can

place one or more tiles on the board and replenish their set from the bag. The player

has to follow several rules for tile placement. First, a tile should be placed next to

another tile already on the board. Second, any sequence of tiles on the board should

have either the same colour and different shapes or vice versa. Third, a player can

only place tiles of either the same colour or same shape during a turn. A player re-

ceives a score for each tile placed on a board. The score is based on the length of the

sequence that the tile forms on the board. The game ends if the bag of tiles is empty

and the player put his last tile on the board. The player with the highest score is the

winner.

In our implementation of TileZero, a human player plays against one of six avail-

able AI opponents. An AI opponent is considered as a scenario. AI opponents have

different strategies and thus provide different degrees of challenge to the

man player. The six AI opponents in an increasing order of difficulty are Very Easy

AI, Easy AI, two versions of Medium AI, Hard AI and Very Hard AI. The TileZero

was extended with the HAT asset to match difficulty of an AI opponent to the play-

er’s demonstrated expertise level. A beginner player is assigned a low initial rating

and therefore, the first few matches will involve Very Easy or Easy AIs. However, as

player gains expertise, the HAT asset starts gradually introducing more challenging

AIs.

6 Integrating assets with game engines

The TileZero game was implemented on MonoGame v3.0, which is a portable open-

source Mono-based and OpenGL-based game engine (monogame.net) [18]. Both

TileZero and the HAT asset were written in C# using Visual Studio 2013. The inte-

gration of the HAT asset and the TileZero game was based on usage of the Asset

Manager and the Bridge pattern for calling game engine methods. The implementa-

tion of Web Services and Publish/Subscribe patterns were not needed. In the next

sections we will first explain game how to setup game code in MonoGame to be com-

pliant with the RAGE architecture. Secondly, the principal classes required for this

integration will be explained. Third, the main interaction processes that are required

for system integration and the reuse of libraries are described. Finally, we will discuss

the portability of the HAT-asset to other game engines and verify the portability to

diverse delivery platforms.

6.1 MonoGame implementation of TileZero

MonoGame uses a simple architecture of 5 methods being called.

 Initialize

 LoadContent

 Update

 Draw

 UnloadContent

When the game starts, the Initialize method is called and the main classes are cre-

ated and configured. Then the LoadContent method is called which covers the loading

of the tile bitmaps. Next MonoGame enters a loop of repetitively calling the Update

and Draw methods around 60 times/sec. In the Update method the keyboard and

mouse states are examined and processed and forwarded to the game logic. In the

Draw method the game model is rendered onto the screen. Finally, when the loop has

ended (the end of the game), an UnloadContent method is called to free up previously

loaded content.

Instead of directly implementing the HAT adaptation algorithm in the MonoGame

code, reuse of the HAT asset requires to declare a separate class (HATAsset) wrapping

all HAT functionality and thus exposing a minimum number of methods needed. Im-

portantly, the HAT asset itself can already be tested without being embedded in the

game. Because the HAT asset does not directly link with the game’s user interface,

the TileZero game code was separated in two distinct classes, covering the game logic

(TileZeroGame class) and the display model (VirtualTileZeroBoard class), respective-

ly. The TileZeroGame class uses the HAT asset to select the appropriate AI for the

computer player when a new match is started. It is called by the MonoGame Update

method, to process keyboard and mouse input into updates of the VirtualTileZero-

Board class. The VirtualTileZeroBoard class is used by the Draw method to visualise

the user interface of the game.

6.2 HAT asset integration

Figure 3 shows a (simplified) UML class diagram depicting the main classes required

for the integration of the HAT asset and the TileZero game.

Fig. 3. Class diagram describing the integration of the HAT asset with the TileZero game.

In Figure 3, the TileZero class represents the game. The HATAsset class represents

the core functionality of the HAT asset, which is the adaptation algorithm. To gain

access to the standardised functionality of the RAGE architecture, the HATAsset class

extends the BaseAsset class from the architecture. This enables the HATAsset class to

communicate with the game engine (the TileZero class) using the Bridge class that

implements the Bridge pattern. The Bridge pattern enables the asset to call methods

from the game engine without knowing the game´s implementation details. Apart

from the IBridge interface, the Bridge class can realise additional interfaces that allow

an asset to delegate common functionalities to a standard library provided by a game

engine. For example, the IDataStorage interface allows an asset to request the game

engine to load or save files.

6.3 The reuse of libraries by using the RAGE architecture

Figure 4 shows the UML sequence diagram reflecting interactions between the HAT

asset and the game engine.

Fig. 4. UML sequence diagram depicting communication processes between the HAT asset and

the game engine.

This figure shows five different communication processes, which are labelled at

the right hand side. These processes will be briefly explained below, with occasional

reference to Figures 3 and 4.

Instantiation of system components. During its initialisation (step 1 in Figure 4), the

TileZero class instantiates all other components of the system. First, a Singleton of the

Asset Manager is created (step 2). Next, an instance of the Bridge class is created

(step 3) and referred to a newly created instance of the HATAsset class (step 4). Dur-

ing initialisation, the HATAsset class performs two main operations. First, it registers

itself with the Asset Manager and receives a unique id (step 5). Next, it instantiates

HATAssetSetting class (steps 6 and 7) to load and manage player and scenario set-

tings.

An asset reusing game engine libraries. The HAT asset uses the IDataStorage inter-

face to load the asset’s settings stored on a local XML file. This process is shown by

steps 8 - 12 in the sequence diagram in Figure 4. The HATAsset requests the Bridge

object to load the file by its name. Contacting the Bridge object is a matter of calling

the LoadSettings method inherited from the BaseAsset class. This method handles

details of the call such as ensuring that the Bridge object has realised the IDataStor-

age interface. In turn, the Bridge object uses libraries from the MonoGame engine to

read textual files and it returns to the HATAsset the content as a string value. Such

delegation of generic functions to game engines has main advantages of avoiding

redundancy in code functionality and unnecessarily bloated implementation of an

asset software component.

An asset reusing RAGE architecture libraries. One standardised functionality in

the BaseAsset class is to deserialise XML specified data into instances of a RAGE

compliant class for managing settings. In the HAT asset, settings include lists of

available scenarios and players together with relevant adaptation parameters such as

ratings. These settings are managed by the HATAssetSettings class shown before in

Figure 3. Within this class, settings for individual scenarios and players are managed

as instances of the HATScenario and the HATPlayer classes respectively. For exam-

ple, each scenario available in a game is identified in the HAT asset by its ID and

assigned a difficulty rating. Because HATAssetSettings extends the BaseSettings class

from the architecture, the HAT asset is able to use the SettingsFromXML method

predefined in the BaseAsset class (step 13 in Figure 4). This method automatically

deserialises the asset’s settings from an XML format into an instance of the HATAs-

setSettings.

A game engine reusing RAGE architecture libraries. Functionalities predefined in

the RAGE architecture may also be reused by different game engines. One of the core

components that offer reusable methods is the Asset Manager that assists the game

engine in coordinating multiple assets. The Asset Manager can keep track of all assets

by ID or class name and provide basic services relevant to all assets. In this particular

example, the Asset Manager is used by the game engine to verify the HAT asset’s

version and check if it is dependent on any additional library (step 14 in Figure 4).

Game engine to asset communication. Every time the player starts a new match, the

game has to decide on the AI opponent to use in the match. The game delegates this

decision to the HAT asset as it is shown through step 15 to 22 in Figure 4. The HAT

asset treats each AI opponent as a scenario and tries to find one with the difficulty

rating that matches the player’s expertise rating. As indicated by step 16 in Figure 4,

the game requests the HAT asset to return an ID of the AI opponent it should select.

This request is accompanied with an ID of the player. As was discussed earlier, the

HAT asset maintains players’ and scenarios’ ratings and IDs in the HATAssetSettings

class. The HAT asset uses the player’s ID to fetch the player´s expertise rating from

the HATAssetSettings class. Next, it also retrieves the list of all available AI oppo-

nents (step 17). Given this information, the asset can find an ID of the AI opponent

best suitable for the indicated player. This ID is returned to the game, and a new

match starts (step 19). Upon completion of the match, the game requests the HAT

asset to update player’s rating (step 21). This request includes player and AI IDs,

duration of time the match lasted, and Boolean indication whether player succeeded

over the AI opponent. The HAT asset uses these four parameters to recalculate play-

er’s expertise rating after each match.

Results of test gameplays. The TileZero and HAT asset were tested by a human

player who played multiple consecutive matches against an AI opponent. The HAT

asset was used to adapt the game difficulty. Initially, the player was assigned a low

initial expertise level and matched against easier AIs. Figure 4 shows how the player's

ratings changed during first 29 matches. The figure also depicts the type of AI oppo-

nent used in each match. Two main trends can be observed. First, the player's rating

shows steady increase indicating a positive overall performance growth of the player.

Second, the frequencies of AI types change during 29 matches. The first half of

matches shows overall prevalence of Very Easy and Easy AIs, while the second half

shows prevalence of Medium and Hard AIs. These two trends together confirm that

the HAT asset worked as expected and matched game difficulty to player's expertise.

Fig. 5. Player's increasing expertise ratings during 29 matches.

6.4 Portability across game engines and platforms

The principal reason for devising the RAGE asset architecture has been to make

available software components that can be reused across different game engines and

different platforms. For verifying this, the TileZero project was ported from the Mo-

noGame engine (monogame.net) to both the Unity engine (unity3d.com) and the

Xamarin mobile app platform (xamarin.com), which both support the C# implementa-

tion. The HAT asset was then added and integrated with each of these new game ver-

sions. No extensive user interfaces were implemented in the Unity and Xamarin game

versions, as for testing the games’ functioning simple buttons for mimicking player’s

decisions were sufficient. Exactly, because of the decoupling of RAGE assets and the

game’s user interface, testing of the system integration is completely independent of

the user interface. Likewise the portability of RAGE assets across diverse delivery

platforms is easily delegated to the game engines´ rendering utilities, which in many

cases include cross-platform delivery. Both MonoGame, Unity and Xamarin support a

0 5 10 15 20 25 30

0
.1

0
.2

0
.3

0
.4

Game matches

P
la

y
e

r'
s

e
x
p

e
rt

is
e

ra
ti
n

g
s

Very Easy AI
Easy AI
Medium Shape AI
Medium Color AI
Hard AI
Very Hard AI

large number of leading platforms, covering different operating systems and hardware

configurations. Successful system integration was established for all three game en-

gines, and proper delivery was verified for Windows desktop, iOS, Android and Win-

dows Phone, be it not in all possible combinations. Some issues were encountered,

but these could be easily solved.

First, during the coding of a mock-up game in Unity for Android, XPath could not

be used for performing some basic calculations. This was caused by the Mono version

that Unity uses. The issue could be solved by replacing XPath by code using the .NET

XmlSerializer class. It should be noted that this issue is not related to the RAGE asset

architecture, but to differences between the Mono and .Net frameworks used.

A second issue was located in the Bridge and occurred when trying to create and

access a platform-independent directory in Unity for storing the player’s performance

data. It turned out the Unity does not allow for this. The Application.dataPath method

only provides a read-only directory on iOS. Likewise, the Environment class cannot

be used as its main target is desktop. The issue could be solved by using Applica-

tion.persistentDataPath, which is read-write on all tested platforms. Thereby the

Bridge class became portable across Unity’s target platforms.

Third, in our tests we used a Xamarin Forms project, which allows for referencing

to assemblies for using their projects, but it also supports direct referencing to com-

piled assemblies. Assemblies can be compiled either against a common .Net frame-

work or as a portable assembly. Although Android and iOS allow for both portable

(mobile) and non-portable solutions, Windows Phone only allows portable assem-

blies. The implies that if a Windows Phone project is present, the HAT Asset and the

Asset Manager assembly need to be compiled as portable assemblies and used on all

respective platform projects.

Fourth, as Unity is using an older .NET version (v3.5) it cannot handle portable li-

braries. Indeed, .NET version 4.5, as used in Xamarin, is required for portable librar-

ies. Obviously the issue is not an issue of the RAGE architecture.

Fifth, as the format of Visual Studio project files is different for common .Net pro-

jects and portable projects, respectively, separate project files are needed for each

type of assembly. With some small adjustments the RAGE asset sources can still be

shared for both types of assemblies. Two minor coding issues surfaced and were re-

moved. The system libraries used by portable assemblies lack support for some prop-

erty attributes used in RAGE assets (Category and Description). This was solved by

removing these two attributes as they are only used by an experimental configuration

editor based on a PropertyGrid and not of vital importance for the game. In the porta-

ble projects the affected lines where omitted using C# compiler directives. Also, the

two projects have different methods for retrieving properties by reflection. This was

addressed by adding some conditional code using C# compiler directives and refactor-

ing the code in such way (using the constructor) that it does not need reflection.

Sixth, the Bridge for multi-target Xamarin Forms projects is composed of a com-

mon part and a device specific part. For Android and iOS the Bridge implementation

is straightforward. For Windows Phone, however, the preferred file I/O API is asyn-

chronous. This requires that the code in the Windows Phone Bridge waits for the re-

sult of asynchronous calls, which could lead to a deadlock. This issue was solved by

including async helper methods that wait for their result in the synchronous interface

in a correct way.

Seventh, if an asset's Bridge interfaces such as IDataStorage are to be used for all

platforms and engines, including Unity, they must be coded synchronously, because

the async keyword was included only after the .Net 3.5 framework, and is thus not

available in Unity.

Finally, some minor portability issues have been reported before, e.g. confusion of

separator characters (e.g. “/” versus “\”), conversion of debug symbol files for Unity,

and the compilation of embedded resources in Unity [7].

7 Conclusion

In this study, we have provided further evidence for the validity of the RAGE game

asset architecture. We have demonstrated that client-side game technology compo-

nents that are compliant with the RAGE architecture can be easily integrated with

existing game engines and allow for reuse across different engines and platforms. The

power of the RAGE architecture is not limited to the potential reuse of assets, but is

also based on the efficient reuse of existing libraries, either from the RAGE architec-

ture or from the game engine in use. To maximise the reusability of assets among

different games, the assets do not directly link with the game´s user interface and

exchange only the basic forms of information with the game engine. In the HAT as-

set, for example, the code of the asset responsible for difficulty adaptation requires

only the exchange of string IDs and a few numerical values such as the duration of a

task. The qualifies the integration of RAGE assets as “lightweight”, which may pro-

mote its adoption.

It should be noted that we have tested the integration of C# coded assets only. In a

previous study, we have tested and validated the RAGE architecture by implementing

a dummy asset prototype also in C++, Java and TypeScript (JavaScript). Establishing

the ecological validity for those languages by integrating real assets in real games for

various game engines and platforms needs further investigation. Moreover, in the

current study for C# some issues surfaced, be it minors issues. Yet, it demonstrates

that cautious and prolonged investigation is needed of the practical factors and condi-

tions that might corrupt seamless asset integration, both for C# and other languages.

So far, this study has established the validity of the RAGE architecture and its under-

lying interaction processes for the cross-platform and cross-game engine reuse of

software components. The RAGE architecture thereby accommodates the large scale

development and application of reusable software components for serious gaming.

Acknowledgement. This work has been partially funded by the EC H2020 project

RAGE (Realising an Applied Gaming Eco-System); http://www.rageproject.eu/;

Grant agreement No 644187.

References

1. Stewart, J., Bleumers, L., Van Looy, J., Mariën, I., All, A., Schurmans, D., Willaert, K.,

De Grove, F., Jacobs, A., Misuraca, G.: The Potential of Digital Games for Empowerment

and Social Inclusion of Groups at Risk of Social and Economic Exclusion: Evidence and

Opportunity for Policy. Joint Research Centre, European Commission, Brussels (2013).

2. García Sánchez, R., Baalsrud Hauge, J., Fiucci, G., Rudnianski, M., Oliveira, M.,

Kyvsgaard Hansen, P., Riedel, J., Brown, D., Padrón-Nápoles, C.L., Arambarri Basanez,

J.: Business Modelling and Implementation Report 2, GALA Network of Excellence,

www.galanoe.eu (2013).

3. Warren, S. J., Jones, G.: Overcoming Educational Game Development Costs with Lateral

Innovation: Chalk House, The Door, and Broken Window. The Journal of Applied Instruc-

tional Design, 4 (1), 51-63, 2014.

4. Bergeron, B. (2006). Developing serious games. Charles River Media, Hingham MA.

5. Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Sea-cord,

R., Wallnau, K.: Technical concepts of component-based software engineering, Volume II.

Carnegie Mellon University, Software Engineering Institute, Pittsburgh (2000).

6. Mahmood, S., Lai, R., Kim, Y.S.: Survey of component-based software development. IET

software, 1(2), 57-66, 2007.

7. Van der Vegt, G.W., Westera, W., Nyamsuren, N., Georgiev, A., Martinez Ortiz, I.:

RAGE architecture for reusable serious gaming technology components. To appear in the

International Journal of Computer Games Technologies (2016).

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable ob-

ject-oriented software, pp. 171-183. Pearson Education, London (1994).

9. Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed systems. In: Pro-

ceedings of the eleventh ACM Symposium on Operating systems principles (SOSP '87),

pp. 123–138, 1987.

10. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of pub-

lish/subscribe. ACM Computing Surveys (CSUR), 35(2), 114-131, 2003.

11. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing adapters

for web services integration. In: Pastor, O., Falcão e Cunha, J. (Eds.) Advanced Infor-

mation Systems Engineering, 17th International Conference, CAiSE 2005, Porto, Portugal,

June 13-17, 2005, Proceedings (pp. 415-429). Springer, Berlin Heidelberg (2005).

12. Klinkenberg, S., Straatemeier, M., Van der Maas, H.L.J.: Computer adaptive practice of

maths ability using a new item response model for on the fly ability and difficulty estima-

tion. Computers & Education, 57 (2), 1813-1824, 2011.

13. Elo, A.E.: The rating of chess players, past and present (Vol. 3). Batsford, London (1978).

14. Van der Maas, H.J.J., van der Ven, S., van der Molen, V.: Oefenen op niveau: het cijfer-

spel in de Rekentuin. Volgens Bartjens 3, 12-15, 2014.

15. Gierasimczuk, N., Van der Maas, H.L., Raijmakers, M.E.: An analytic tableaux model for

Deductive Mastermind empirically tested with a massively used online learning system.

Journal of Logic, Language and Information, 22 (3), 297-314, 2013.

16. Eggen, T. J., Verschoor, A.J.: Optimal testing with easy or difficult items in computerized

adaptive testing. Applied Psychological Measurement, 30(5), 379-393, 2006.

17. Mackey, A.P., Hill, S.S., Stone, S.I., Bunge, S.A.: Differential effects of reasoning and

speed training in children. Developmental Science, 14(3), 582-590, 2011.

18. Pavleas, J., Chang, J. K. W., Sung, K., Zhu, R.: Learn 2D Game Development with C#,

(pp. 11-40). Apress, New York (2013).

