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ABSTRACT ARTICLE HISTORY
This paper presents a computational model for simulating how people learn Received 30 January 2017
from serious games. While avoiding the combinatorial explosion of a games Accepted 21 August 2017
micro-states, the model offers a meso-level pathfinding approach, which is
guided by cognitive flow theory and various concepts from learning Seri . o

. . . R . . erious game; learning;
sciences. It extends a basic, existing model by exposing discrete-time simulation; computational
evolution, allowing for failure, drop-out, and revisiting of activities, and model; flow theory
accounting for efforts made and time spent on tasks, all of which are
indispensable elements of gaming. Three extensive simulation studies are
presented involving over 10,000 iterations across a wide range of game
instances and player profiles for demonstrating model stability and
empirical admissibility. The model can be used for investigating
quantitative dependences between relevant game variables, gain deeper
understanding of how people learn from games, and develop approaches
to improving serious game design.

KEYWORDS

Introduction

Games for teaching and learning have been around for over four decades (Abt, 1970). In recent years
renewed interest in these so-called “serious games” arose because of greatly improved conditions for
game development and distribution: better end-user connectivity, deep market penetrations of PCs,
handheld devices and game consoles, and reduced production costs because of low cost middleware
tools for graphics design, media production and game creation (Saveski et al., 2015). As serious games
are among the most complex and diverse learning environments (Bjork & Holopainen, 2005), the
relationship between the designed structural properties of a game and its pedagogical capabilities
is not well understood. Ideally, serious game design should be paired with instructional design, requir-
ing the cautious balancing of “playful” game mechanics and “serious” instructional principles De
Gloria, Bellotti, & Berta, 2014). But unfortunately both game design and instructional design areill-struc-
tured domains that are often considered an art rather than an established profession, thereby lacking
appropriate scientifically-grounded knowledge and evidence (Bjork & Holopainen, 2005; CERI, 2000).

In accordance with a wider debate between methodological camps in the social sciences (De
Marchi, 2005; Reeves, 2006), this paper proposes to extend the scientific study of serious games by
complementing both the empirical hypothesis-testing framework and the game-theoretical deduc-
tive-modelling framework with an approach of computational systems modelling. The computational
approach aims to capture the individuals’ behaviours in behavioural rules along with a set of contextual
parameters and constraints, and produce dynamic models that recreate observed phenomena. This
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paper extends a preliminary event-based computational model to a discrete-time computational
model that simulates how people learn while playing serious games (Westera, 2017). The proposed
model combines gaming concepts (decision strategies, flow theory, challenges) and concepts from
learning sciences and cognitive psychology (experiential learning, motivation, knowledge states, learn-
ing curves). It would allow game researchers and developers to deeply investigate quantitative depen-
dences between relevant game variables and player characteristics, gain deeper understanding of how
people learn from games, and eventually develop methods and tools to improving serious game
design. As a preparatory step in this line of research, the model will be tested for stability and empirical
admissibility. Research questions are formulated as follows:

e How to express a discrete-time simulation model for serious gaming that avoids inherent
complexity?

e To what extent does the model produce stable and plausible outcomes across different game
models?

e To what extent does the model produce stable and plausible outcomes across different player
models?

e To what extent does model evaluation allow for investigating how people learn during the game?

The paper is setup as follows. First, we will summarise related work in computational game
models. Second, we will present and explain the discrete-time model. Third, we will report on a
wide range of simulation experiments. Finally, we will discuss our findings.

Related work

In game research computational models of games are used for three different purposes: (1) under-
standing a particular strategy game (e.g. chess), (2) playtesting, and (3) automated game level
generation.

Over half a century of research in the domain of strategic turn-based board games has procured a
variety of intelligent algorithms and computer programmes that simulate game play (Van den Herik,
Uiterwijk, & Van Rijswijck, 2002). Its successes are in outperforming the world chess champion in 1997,
and recently the defeat of the reigning world champion Go. Apart from the specific game-theoretical
insights this research produces about the game in question, e.g. its winning strategies, it is strongly
motivated by the advancement of artificial intelligence (Al).

Quite some research has been directed to machine-driven play testing and game balancing. For
understanding how a game would work, game developers usually arrange a playtest of a game pro-
totype by test players. Data thus collected can be used for identifying dominant patterns (for instance
a heat map indicating where players frequently are), characterisation of play styles, or analysis of
player experiences. However, such testing is expensive and laborious, and can only be done at the
end of a design cycle, when a complete and playable version of the game is available. As an alterna-
tive to using test players as the exclusive source of information, simulation models can be used. In
recent years, various Al-driven methods and tools have been proposed to simulate game play for
automated game testing, be it largely as proofs of concept tailored to one particular game (Salge,
Lipski, Mahlmann, & Mathiak, 2008; Zook, Fruchter, & Riedl, 2014; Volz, Rudolph, & Naujoks, 2016;
Dolmans, 2011; Jaffe, 2013).

Automated generation of new game levels requires smart algorithms that take into account the
game mechanics and object types that underlie the game. New levels should extend existing ones
and offer challenges that take into account accumulated skills of the player. Generally evolutionary
methods or other Al methods are used to design and generate new levels (Sorenson & Pasquier,
2010; Neufeld, Mostaghim, & Perez, 2015). Automated video game playing agents are then used
to evaluate the levels, and to tweak parameter values to player skills and optimal player enjoyment.
An important part of level generation is the automated creation of content objects, e.g. 3D buildings,
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furniture, maps, mazes, etc. These procedural generative techniques help to substantially reduce the
costs needed for game content creation and personalised game play (Togelius, Justinussen, &
Hartzen, 2012).

However, all these simulation studies essentially focus on leisure games and do not take into
account learning processes. A provisional version of a computational model for serious gaming
was proposed and successfully tested by Westera (2017). The model relies on flow theory, decision
theory and experiential learning theory. In the model, game play is considered a pathfinding
process across a set of game activities that enhance the playefs knowledge states. The current
paper will extend the original model, while removing some of its manifest weaknesses. First, the
model will expose discrete-time evolution rather than discrete events (game activities). Second, as
opposed to the previous work the model will allow for failure, drop-out, and the revisiting of activities,
all of which are relevant factors in learning from games. Third, the model would account for efforts
made and time spent on tasks, both of which are relevant for guarding the efficacy of learning.

Model description
Summary of starting points

The proposed model extends a preliminary model published elsewhere, which is summarised below
(Westera, 2017). To reduce overall complexity and to avoid model overfitting and the combinatorial
explosion of game states and player states, the model focuses on meso-level aggregates that consti-
tute meaningful activities, typically learning activities, directly originating from the game scenario,
e.g. write a note, interview a person, track a hidden object, buy supplies, navigate. The game is
thus described by a pathfinding process across such meso-level game activities, while elementary
cognitive flow theory is used for evaluating the match between player skills and the challenges
posed (Csikszentmihalyi, 1991). Also, Vygotsky’s theory of social development (Vygotsky, 1933—
1987) is incorporated in the model: one may want to challenge players slightly beyond the bound-
aries of their abilities in order to preserve the curiosity and engagement that are needed for learning
new things. By replacing the event-based model description with a discrete-time description, a finer
grainsize level description is achieved that covers the evolution of parameters across time. Every
game activity will be described in a series of discrete time steps, in order to do justice to the detailed
dynamics of play. This is a necessary extension for the detailed investigation of knowledge growth,
efforts made, intermediate failures, mood changes, emergent phenomena and the occurrence of
critical events.

Basic ingredients of the model are the knowledge model, the player model and the game model,
all of which are bound together in the pathfinding algorithm. The productive outcomes of a serious
game need to be expressed as knowledge gains. The knowledge model is generally expressed as a
knowledge tree of operationalised learning goals or learning outcomes, e.g. skills, facts, competences,
while child nodes in the tree have a precedence relationship with their parent nodes. While the game
is a represented as a network of meso-level activity nodes, each activity in the game is allowed to
address one or more nodes from the knowledge tree. Each activity in the game is characterised
by prior knowledge requirements and by an inherent complexity. The player model accounts for
the playefs mental states, preferences and behaviours. In accordance with the initial model only
few, primary player factors will be taken into account: overall intelligence, knowledge state, and
motivation. While both intelligence and prior knowledge refer to the playefs learning capability,
motivation is linked to personal attitudes, emotions and ambitions. These are exactly the key dimen-
sions that reflect the potential of serious games: learning new knowledge from serious games, while
benefitting from their motivational power.

Conceptual outline

The relationships between the main model variables are depicted in Figure 1.
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Figure 1. Causal model of learning from a game activity.

The proposed model reflects the interplay between the game and the player. The game is
assumed to be made up of game activities (1) each of which is characterised by an attractiveness
value (2) and a complexity value (3). Each activity addresses one or more knowledge nodes (4),
which may require some prior knowledge (5). The player in turn is characterised by a set of
user states (6), in particular the player’s actual knowledge state (7), which may gradually increase
during the game, and player intelligence (8), which is likely to be constant. The perceived chal-
lenge (9) that is posed by the game activity at a certain moment in time is determined by any
gaps between the required prior knowledge (5) and the player’s actual knowledge mastery
level (7) in the respective knowledge nodes. Also, the inherent complexity (3) of the activity influ-
ences the severity of the challenge. According to flow theory, the challenge will influence the
player’s motivation (10), either leading to high levels of cognitive flow when the challenge is suffi-
ciently doable, or to reduced interest and engagement in case of a mismatch (too hard, or too
easy). In addition, also the attractiveness (2) of the game activity would directly influence the
player’s motivation. Finally, both the player’s motivation level (10) and the player’s intelligence
(8) determine the effectiveness of learning (11) and eventually the knowledge gained (12).
Then, after updating the playefs knowledge states (7), the whole cycle is repeated for the next
time step, while the player progresses in the game.
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Model extensions

Discrete time model

For extending the original model to a discrete-time model, all original equations constituting the
model have been converted to incorporate time dependency. Whilst the reader be referred to
Westera (2017) for mathematical details of the model, we confine ourselves here to the Equation
(1) below that holds for the learning effectiveness L(p,j,t) of player p at time t, in game activity ji:

 (Culp, ) — Fv)z)

207

Lp,j, ) = AG) - I(p) - e( Q)

Here A(j) is a metric of the attractiveness of game activity j that the player is carrying out at time t; I(p)
is the overall intelligence of player p; Cy(p, t) is the challenge posed to the player, which is deter-
mined by the (average) knowledge deficits or knowledge surpluses that hold for respective knowl-
edge nodes in game activity j, and the game activity’s inherent complexity; or is the flow factor,
which indicates the sensitivity of the player’s motivation to a challenge mismatch; Fy is the Vygotsky
factor, which establishes that optimal learning occurs at a slightly positive challenge (Westera, 2017).
The exponential factor in Equation (1) reflects the mechanism of optimisation.

System updates

In each time step At the player’s knowledge state has to be updated to account for the knowledge
gained. The process of updating the mastery P(p,n,t) of player p for knowledge node n (which is
covered by activity j) is described by the differential expression of Equation (2):

P(p, n, t+ At) =Pl(p, n, t)+ L(p,j, t) - (1 — P(p, n, t)).At (2)

Since a node in the knowledge tree, as a parent, combines, integrates and extends all child nodes, the
process of mastering a parent node inherently contributes to the further mastery of all subordinate
nodes in the parent tree. Hence, in the updating process Equation (2) should also be applied for
updating the respective child node states and deeper subordinate levels. As a consequence, master-
ing a parent node in the game, be it partially, will directly contribute to knowledge gains in all con-
ditional nodes in the knowledge tree.

Success and failure

A system that allows for successes and failures requires a rule set for these. First, it should be clear
when an activity (and in the end the full game) is successfully completed. Secondly, players
should be allowed to prematurely quit an activity and (potentially) revert to it later on. Hence it
should be clear in what conditions a player will abandon an activity early. To avoid endless swapping
between dropping out and retrying the same activity, additional restrictions are needed. Also it
should be clear when a failure becomes a definitive failure, which cannot be undone. All these con-
ditions are greatly dependent on the game under question. For being able to test the model a generic
set of conditions for success and failure are defined below. These are only used for testing purposes
and do not necessarily imply constraints to the core of the computational model.

For successful completion of an activity the player’s mastery of all its associated knowledge nodes
should have passed a predefined cutting score level S.. The cutting score is the performance assess-
ment benchmark, which is likely to be the same for all nodes. Equation (3) presents the activity com-
pletion criterion in case of g knowledge nodes with player p’s mastery level P,(p,n,t):

- Palp,n ) = S 3)

n=1

Q=

(Alternatively, one may require that this threshold holds for each separate knowledge node).
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Premature drop-out would be triggered by low learning progress (or likewise, unfavourable chal-
lenge or low motivation). By dropping out early, players can engage in alternative, more productive
activities before revisiting the activity at a later stage, when prior knowledge or motivation is brushed
up. A few rules are needed for this. First, players should not be allowed to drop out an activity during
the first few time steps, as it may lead to unwanted repetitive cycles of quitting and re-entering in
activities. Players should be allowed to get acquainted with a new challenge. Therefore, a dead-
time interval Tp should apply: during the first T after having entered the activity, drop-out is inhib-
ited (except in case of successful completion). Second, also a quality criterion should be applied. A
rationally motivated stop criterion could be based on actual learning gains. By using Equation (2)
and introducing a lower limit € (e<<7) for the knowledge gained during time step At, a player
drop-out rule can now be expressed as (see Equation (4)):

q

Lip, t) - At - %Z (1 —Plp, n, 1)) < ¢ forP(p,n, t) < S 4)
i=1

Third, when an activity is quit, it should be excluded from the next options. Fourth, to prevent players

from endlessly revisiting the same activity with a challenge too hard, an upper limit U, for the number

of trials is needed. After U, unsuccessful trials to complete the activity, it is registered as a persistent

failure and removed from the activity options. The overall game has ended when the game’s activi-

ties are either successfully completed or, in case of persistent failure, are no longer accessible.

Simulation experiments
Preparations

The proposed model of serious gaming was technically implemented using Scilab 5.5.2 (www.scilab.
org). A baseline game skeleton and a baseline player were defined as a starting point for experimental
adjustments. The baseline game skeleton was defined to be composed of 40 game activities. Learn-
ing goals were represented as a 4-level knowledge tree with degree 3, resulting in 40 interdependent
knowledge nodes. The knowledge nodes were randomly distributed across the game activities,
whereby each game activity addresses 3 knowledge nodes, and (evidently) each knowledge node
has 3 occurrences in the game. For the time being each game activity was assigned a constant, mod-
erate attractiveness of 0.5 in the interval [0,1], as well as a constant, moderate complexity ratio of 0.5.
The activity with lowest overall rank in the knowledge tree was assigned the start activity and, con-
versely, the activity with highest overall rank in the knowledge tree was assigned the end activity. The
process of playing the game would in principle allow any trajectory from the start activity across the
remaining activities toward the end activity. The cutting score for each game activity was set to S¢c=
0.6. The lower threshold for prematurely leaving an activity was set to €= 0.002, based on an empiri-
cally tested estimate. Activity dead-time Tp=20 and the maximum number of trials U;=5.

Provisionally the baseline player was equipped with a moderate intelligence ratio of 0.5 and
without any prior knowledge with regard to the nodes in the knowledge tree. The player’s strategy
of selecting the next activity after completing or quitting the one before is based on maximum
expected learning effectiveness. Cognitive flow influence was initially excluded by setting a
default value of of as large as 100. Likewise, Vygotsky’s effect was initially disabled by setting the
Vygotsky factor of the baseline player to a default value of F,=0. The time scaling factor of At=
0.01 was found to provide sufficient detail.

Model stability and plausibility across different game profiles

Learning curves
Using the baseline player profile as a fixed reference, different instances of the baseline game were
generated by randomly redistributing the knowledge nodes across the set of game activities. Figure 2
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Figure 2. Learning curves of the baseline player in 10 random instances of the baseline game.

shows the learning curves of the baseline player for 10 different (random) instances of the baseline
game. In total the simulation comprised 1500 game iterations.

The player’s knowledge mastery (vertical scale) is expressed as the average mastery level of all
nodes in the knowledge tree at the end of the game. In all cases a pattern of gradual knowledge
gain can be observed, demonstrating convergence and stability.

Variability of learning curves

Variability of the 1500 learning curves in the experiment is substantial, both horizontally (time spent)
and vertically (knowledge mastery). Time spent averages at 1762 time steps, with a standard devi-
ation of SD=473 (27%). The final knowledge mastery levels attained in the games show some vari-
ation around an average of 0.75 (standard deviation SD = 0.03; 4%).

Vertical variability of the learning curves was calculated by first transforming the time scales to a
uniform scale, and then calculating the vertical variance across the different game sessions (vertical
scale) for each time step. By averaging these over the full time scale (horizontal scale) a weighted
value of the curves’ vertical spread can be obtained. Figure 3 shows how the vertical variability of
the learning curves depends on the number of game iterations.

The figure shows that the learning curve variability saturates at a level of 0.0600 (standard devi-
ation SD =0.0003; 0.5%), measured in the interval [500,1500].

Drop-out and failure

Early activity drop-out is correctly accommodated by the stop rules for failure. Within the given set-up
of the games, on average 34 out of 40 activities were successfully completed, while 6 activities
showed a failure. The average number of early drop-outs was 50 (SD = 16; 32%), largely predeter-
mined by the drop-out rules. It demonstrates that early drop-out of an activity does not necessarily
block successful completion of the activity at a later stage.

Regression of learning outcomes against time spent
Generally learning outcomes increase with time spent. In the sample a positive correlation was found
between the time spent in the game and the knowledge gained: r=0.725. This suggests that about
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Figure 3. Vertical variability of learning curves as a function of the number of iterations.

half of the variance of learning outcomes can be explained by time spent. Figure 4 shows a scatter-
plot of the 1500 data points and the least-squares regression line with intercept 0.6599 and slope
0.0000515.

Model stability and plausibility across different player profiles

Learning curves

Using a single baseline game instance as a fixed environment, a large set of player profiles were
generated to test the model. Player variables include the player’s prior knowledge, the player’s
intelligence, and the player’s susceptibility to flow, respectively. The latter, which is expressed
by the flow factor of, is potentially the most critical factor, because of its nonlinear occurrence
in the model: for small values or Equation (6) may readily lead to breakdown of learning. In con-
trast, player intelligence is more likely to act as a scaling factor for the speed of learning. Likewise,
the playefs prior knowledge will speed up the learning because of reduced knowledge gaps.
Figure 5 shows the learning curves for the baseline player in the baseline game for different
values of or.

As or decreases, the total knowledge gained decreases, while the learning takes more time. When
0r< 0.1 a critical region is entered, where the learning collapses. As opposed to this: when o is larger
than 0.15, which covers the range where the player is less sensitive to flow, the knowledge mastery
gets more or less stable. This is consistent with the results shown in Figure 6 below.

Critical influence of flow factor o on learning
In Figure 6 the knowledge gain is plotted for the whole range of the player’s susceptibility to
flow o

Each data pointin Figure 6 reflects the average knowledge mastery of 20 players randomly assigned
an intelligence (mean = 0.5; SD = 0.1) and uniform prior knowledge in all nodes (drawn from a normal
distribution at mean =0, SD = 0.2, in the interval [0,1]). The data likewise reveal a steep slope when or <
0.1, indicating the collapse of learning. The vertical spread in the figure is typically 2%.
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Figure 4. Linear regression of knowledge mastery versus time spent for 1500 data points.

Variability of learning curves
For different values of o the variability and stability of the model was extensively tested against 1500
iterations with randomly selected players (intelligence and prior knowledge sampled as before).
Figure 7 presents the average (vertical) variability of the learning curves against the number of iter-
ations for 0= 0.07, 0r=0.14, and or=0.20, respectively.

The curves are quite steady and do not show extreme variations or singularities. After some
hundred iterations the variability tends to saturate. Table 1 summarises the saturation levels in the

08
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orF=0.
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0.5 4
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024
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Figure 5. Learning curves for different values of flow factor of.
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Figure 7. Vertical variability of learning curves versus the number of iterations, for different values of o.

interval [500,1500], as well as the attained knowledge mastery levels and times spent. Also it lists the
number of activities completed (out of all 40 activities) and the number of drop-out events.

At low values of of, which means that players are more sensitive to unbalanced challenges, the
vertical variability of the curves increases, as well as the time spent. The knowledge mastery level
goes down, and less activities are successfully completed. At the same time players are dropping
out of activities more often. This all fits in the frame of increased sensitivity to mismatches
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Table 1. Variability of simulation data (and standard deviations) obtained from iterations in the interval [500,1500] for different
flow parameters.

OF Vertical variability Level of mastery Time spent Completed out of 40 Drop-out events
0.20 0.030 (0.0003) 0.679 (0.15) 1393 (326) 36 (3) 58 (20)
0.14 0.033 (0.0002) 0.664 (0.016) 1575 (342) 34 (3) 68 (20)
0.07 0.043 (0.0001) 0.606 (0.015) 2642 (427) 19 (5) 123 (21)

between challenges offered and the players’ capabilities, whereby the players’ motivations and
hence their learning effectiveness diminish.

Playing strategies

For studying how different playing strategies influence the attained knowledge mastery a set of 1000
players was generated by randomly assigning intelligence (mean = 0.5; SD=0.1) and uniform prior
knowledge in all nodes (drawn from a normal distribution at mean =0, SD=0.2, in the interval
[0,1]). The flow factor was fixed to or=0.15. Playing strategies refer to the pathfinding algorithms
that apply for moving from one activity to the next, irrespective of the acting agent: either the
player, teacher, the game or any other agent could control the strategy. The following decision strat-
egies have been studied:

(1) Highest learning effectiveness So far all studies have used this as the baseline strategy.

(2) Minimal knowledge deficit With this strategy the selection of the next game activity is based on
minimal knowledge deficit.

(3) Maximum knowledge growth The strategy opts for activities that allow for maximum knowledge
gains.

(4) Vygotsky’s challenge This strategy would select a small positive challenge, which is slightly
beyond one’s capabilities, as indicated by the Vygotsky factor Fy.

Alternative strategies of using optimal motivation or optimal challenge would duplicate the result
of the strategy based on learning effectiveness (1), because for the same player they are proportional
in the model. For the Vygotsky strategy (4), the Vygotsky factor was set to F,=0.1. For each of the 4
strategies 1000 learning curves were iterated. Thereafter the curves were subjected to a set of linear
transformations to derive average data points both for the knowledge mastery scale and the time
scale. Figure 8 shows the 4 aggregate learning curves.

Not just the learning curves are different, but also their endpoints reflecting the knowledge
mastery after game completion and the time spent. The curves, however, are deceptive, as they
do not reflect the standard deviations and the numbers of successes and failures. Table 2 summarises
the statistics of the simulations for each of the strategies.

From the table it can be concluded that strategy 2 (minimal knowledge deficits) should be dis-
qualified, because of the low completion rate and large number of drop-outs. Apparently, activi-
ties exposing minimal knowledge deficits do not necessarily produce optimal knowledge gains.
Strategy 2 (Vygotsky) produces significantly highest learning outcomes, but this goes with long
playing times. Most efficient are strategy 1 (highest learning effectiveness) and strategy 3
(highest knowledge growth), showing lower playing times and less drop-out events. It should
be noted that all four strategies reflect one-sided, local optimisation by identifying the largest
utility on the short-term. However, given the discrete nature of the model and the nonlinear
dependencies of model variables, the pathways to long-term successes may not be based on
local maximums. In principle, the model would allow to look ahead and do deep tree search
for identifying winning strategies that maximise final learning outcomes against favourable con-
ditions (time spent).
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Figure 8. Average learning curves of a sample of 1000 random players for 4 strategies.

Table 2. Simulation outputs (and standard deviations) for 4 game strategies averaged over 1000 iterations each.

Strategy Vertical variability ~ Level of mastery  Time spent ~ Completion out of 40  Drop-out events
1. Learning effectiveness 0.033 (0.014) 0.669 (0.016) 1528 (349) 34 (3) 66 (20)
2. Knowledge deficits 0.017 (0.007) 0.704 (0.017) 3715 (179) 6 (3) 172 (11)
3. Knowledge gains 0.028 (0.015) 0.654 (0.014) 1496 (333) 34 (3) 62 (21)
4. Vygotsky 0.023 (0.008) 0.725 (0.017) 2367 (506) 32(7) 97 (33)

Discussion and conclusion

The model presented in this paper provides a proof of principle of a computational modelling meth-
odology for serious games. By avoiding the combinatorial explosion that would stem from using of
detailed game states and player states, the proposed meso-level description has demonstrated to
provide stable, reproducible and plausible results. In sum, the model requires a knowledge tree indi-
cating the learning objectives, and a set of game activities, possibly annotated with complexity and
attractiveness indices. Each activity is supposed to somehow contribute to the mastery of learning
goals, which means that a mapping of knowledge nodes to game activities is needed. Although
such mapping is not straightforward, various methodologies are available for defining the
mapping, for instance Evidence-Based Design and Bayesian nets for stealth assessment (Shute,
2011). Players are characterised by intelligence, prior knowledge and susceptibility to flow, while
their motivation and learning progress is evaluated and continually updated during their progression
in the game.

Reverting to the research questions formulated in this paper it can be concluded that a discrete-
time simulation model can be successfully built on meso-level concepts. The model has shown to
provide stable and reproducible learning curves that are in agreement with empiricism and intuitions
in serious gaming. Feasibility was demonstrated for a variety of different game instances and for a
variety of different players. The model allows to describe and investigate a variety of game-internal
variables and processes, including mismatches, time on task, failure and successes, motivation, game
strategies and the progression of learning: it allows to open the black box and look into the
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mechanisms that influence the quality of game-based learning. Thereby, the model as much as the
methodology have the potential to establish a new line of research on serious gaming, in particular in
using computational methods for obtaining a deeper understanding of the connection between
learning and play.

Nevertheless, the model goes with several limitations. First, the model is only loosely based on
concepts and theories of learning. It bypasses the complexities of instructional content and didactics
by postulating that engagement in a game activity entails a productive learning experience. The pro-
ductive influence of failure on learning is not (yet) accounted for (Mory, 2003; Mathan & Koedinger,
2005). Second, although “game activities” are a key concept in the model, the meso-level indication
does not say much about their grainsize. In fact, the model is ignorant and indifferent about the grain-
size. There are no limitations to the set of activities, which need not be a fixed, predefined set as used
in this paper, but allows for emergent activities, which could in principle be added to the pool of
alternatives to choose from, at any time during the game. Third, in some ill-defined domains such
as soft-skills, well-elaborated knowledge trees as required by the model are rare. This, however, is
a transcending problem that is not exclusive for the model. In some cases machine learning
approaches can be applied for identifying knowledge patterns and their mapping on to game activi-
ties and behaviours (Shute & Ventura, 2013). Fourth, the model does not include cognitive models of
human learning, but instead just relies on the phenomenology of the process of play. Connecting
with existing models of human cognition, e.g. ACT-R (Anderson & Lebiére, 1998), would allow for
including a multitude of psychological constructs, be it at the expense of simpleness.

Now that a practicable model has become available, next research steps would cover empirical
validation across a wide range of serious games, along with serious game theory development
and ultimately the development of predictive systems and tools. So far, however, conditions for
empirical validation with real players are only partially met, since some of the model’s variables
are still hard to record, such as the real-time progression of motivation and flow. Hence, for the
time being the link with real world experiments should be based on a discrete events approximation
of the model (e.g. Westera, 2017) rather than the full discrete-time evolution version presented here.
Existing instruments (e.g. questionnaire items) could then be used after each iteration step to capture
the required data, be it not without practical or methodological difficulties. Still, advances in learner
data analytics, stealth assessment, machine learning and physiological sensors for capturing such
data are likely to offer new opportunities in the near future. Ultimately, the computational modelling
approach would help to design serious games that are more effective for learning.
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