
The RAGE Advanced Game Technologies Repository
for Supporting Applied Game Development

A. Georgiev1, A. Grigorov1,6, B. Bontchev1, P. Boytchev1, K. Stefanov1, W.
Westera2, R. Prada3, Paul Hollins4, Pablo Moreno5

1 Sofia University "St. Kliment Ohridski", Faculty of Mathematics and Informatics, Bulgaria
{atanas,alexander.grigorov,bontchev,boytchev,stefanov}@fmi.uni-

sofia.bg
2 Open University of the Netherlands

Wim.Westera@ou.nl
3 University of Lisbon, Portugal

rui.prada@tecnico.ulisboa.pt
4 The University of Bolton, UK
pah1@bolton.ac.uk

5 Universidad Complutense de Madrid, Spain
pablom@fdi.ucm.es

6 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
grigorov@math.bas.bg

Abstract. This paper describes the structural architecture of the RAGE reposi-
tory, which is a unique and dedicated infrastructure that provides access to a wide
variety of advanced technologies (RAGE software assets) for applied game de-
velopment. These software assets are reusable across a wide diversity of game
engines, game platforms and programming languages. The RAGE repository al-
lows applied game developers and studios to search for software assets for inclu-
sion in applied games. The repository is designed as an asset life-cycle manage-
ment system for defining, publishing, updating, searching and packaging for dis-
tribution of these assets. The RAGE repository provides storage space for assets
and their artefacts. It will be embedded in a social platform for networking among
asset developers and other users. A dedicated Asset Repository Manager provides
the main functionality of the repository and its integration with other systems.
Tools supporting the Asset Manager are presented and discussed. When the
RAGE repository is in full operation, applied game developers will be able to
easily enhance the quality of their games by including advanced game technology
assets.

Keywords: software assets, serious games, asset repository, asset development,
taxonomy tools, metadata editor, applied games, reuse.

1 Introduction

Applied gaming is highlighted as one of the main priorities in Horizon2020, the Re-
search and Innovation Programme of the European Commission. Policy makers of the

mailto:pablom@fdi.ucm.es

European Commission envision a flourishing applied games industry that helps to ad-
dress a variety of societal challenges in education, health, social cohesion and citizen-
ship, and equally one that stimulates the creation of jobs in the creative industry sector.

Although applied or serious games have been successfully employed in education
and training settings across a wide and varied range of application domains, seizing the
full potential of applied games has been challenging. In contrast, the leisure games in-
dustry is an established industry dominated by large international hardware vendors
(e.g. Sony, Microsoft and Nintendo) and large publishers and retailers. Conversely, the
applied game industry is fragmented across a large number of small independent busi-
nesses with limited interconnectedness and knowledge exchange [1, 2].

The RAGE project [3] aims to stimulate the applied game industry by making avail-
able a set of advanced reusable game technology components (software assets) that
game studios can easily integrate in their game development projects. Applied game
studios would benefit from using state-of-the-art technologies, while incorporating
complex pedagogic technical functionality would become easier and quicker, and the
cost of development would be reduced. The software assets cover a variety of function-
alities including game analytics, emotion recognition, assessment, personalised learn-
ing, game balancing and player-centric adaptation, procedural animation, language
technologies, interactive storytelling, and social gamification.

While the main research goal of the RAGE project is to support the applied game
industry by making available a large set of reusable, advanced software components
(applied gaming assets), this paper focuses on the design of the repository infrastructure
that supports the processes of development, reuse and sharing of applied gaming assets.
This paper presents the asset repository architecture and the associated asset develop-
ment methodology. We first present the related work efforts, then discuss our approach
(research method), describe the software asset concept, provide details of the design
and implementation of the back-end repository system architecture and corresponding
front-end tools, and we conclude with a brief description of first experiments with the
infrastructure, analysis and identification of further development and research efforts.

2 Related work

Asset-based software development relies on reusing well documented and cohesive
software artefacts and, therefore, it is inconceivable without a platform for storing and
accessing assets. An asset repository as a software tool is defined by Ackerman and
colleagues [4] for storing and retrieving reusable assets and managing asset access con-
trol for asset producers and consumers, according to the phases of the asset life cycle.
They introduce the IBM Rational Asset Manager (RAS) repository, which handles tasks
and activities of software asset producer, consumer and subscriber roles, while offering
reduced production costs and improved software quality. In order to facilitate cross-
project reuse of assets, the Rational Asset Manager model provides monitoring of asset
categorization and usage together with multi-platform compliance management.

Another example for a RAS-based asset repository is the Atego Asset Library [5],
which is a scalable Web-based repository for reusable software engineering artefacts.
It is based on OMG RAS and integrates Unified Modelling Language (UML) and Sys-
tems Modelling Language (SysML) in order to facilitate asset reuse at design time.

Currently, the tool is supported as PTC Integrity Asset Library1 and, besides the pub-
lishing, finding and reuse of assets, provides services as interest registry and notifica-
tion, automatic file interrogation, traceable links and reuse metric dashboard.

Extensions of the OMG RAS have been proposed for designing open source Web-
based asset repositories providing advanced classification, search and utilization of re-
usable software assets of various types. The OpenCom asset repository was created as
a supporting tool of Shanghai Component Library [6] based on an extension of OMG
RAS profile aiming at collaborative creation of knowledge by web users. The Lavoi
free source asset repository [7] was developed based on an extension of the component
profile of OMG RAS broadening the categories about classification, solution, usage
and related assets.

Within the computer games domain, the asset concept is often reserved for media
files to be incorporated in a game. For example, the Intel® XDK HTML5 Cross-plat-
form Development Tool [8] offers an asset manager for game development in conjunc-
tion with several game platforms. Here assets are often considered audio-visual game
objects to be included in a project. In RAGE the focus is on software assets, reusable
components adding specific (pedagogic) functionality for applied game development.

A similar attempt related to using a digital repository of metadata resources for ed-
ucation, combined with a portal for the respective community of practices build around
the repository, is described in [9]. Other approaches to endowing digital libraries with
adaptability capabilities in order to scaffold and enhance end user experience are pre-
sented in [10]. Similar attempts inside GALA Network of Excellence are the SoA
framework for SGs [25] and the repository for exchange of game resources [26].

3 RAGE Software Assets

A RAGE asset as a self-contained software component related to computer games,
intended to be reused and or repurposed across different game platforms. Its formal
definition is compliant with the asset definition of the W3C ADMS Working Group
[11], which refers to abstract entities that reflect some “intellectual content independent
of their physical embodiments”. In principle, not all assets are required to include soft-
ware, however this paper focusses on software assets.

The RAGE asset is designed to contain advanced game technology (software), as
well as value-adding services and attributes that facilitate their use, e.g. instructions,
tutorials, examples and best practices, instructional design guidelines, connectors to
major game development platforms, test plans, test scripts, design documents, data ca-
pacity, and content authoring tools/widgets for game content creation.

1 http://www.ptc.com/model-based-systems-engineering/integrity-modeler/asset-library

Figure 1. Conceptual layout of a RAGE Asset

Figure 1 presents the general layout of a RAGE asset. Its software architecture is
component-based and has been described and validated in [12]. It addresses both the
internal workings of an asset and the level of interaction of assets with the outside
world, including the mutual communications between assets. The RAGE architecture
avoids dependencies on external software frameworks and minimises code that may
hinder integration with game engines. It relies on a limited set of standard software
patterns and well-established coding practices. Each RAGE asset contains metadata,
which describe its content and functionality. RAGE metadata model in the domain of
applied gaming was designed for defining the asset’s metadata and for enabling the
proper implementation of the RAGE Asset repository system architecture [13].

4 Our approach

The research methodology for this study is based on the Rapid Application Develop-
ment model [14]. We performed an extensive needs assessment study [15], including
asset developers, educators and game producers. We have identified the services to be
supported through the repository and other related tools and, in parallel, designed the
RAGE metadata model to fit the specified domain of reusable gaming components
(RAGE software assets). It was clear that we could not reuse any existing solution, but
needed to design and implement our own software repository, targeting the identified
needs and characteristics of the applied game domain.

In the next stage we provided the initial design of the RAGE asset as a software
component, and the architecture of the RAGE software repository, aimed at supporting
the development, storage, sharing and reuse of assets. In the next stage we provided
details on the technical implementation of the software repository. We performed sev-
eral interactions between these two stages until we reached a stable and more or less
complete solution. In the last stage we analysed the first use case scenarios of the re-
pository through several client tools, arranged first evaluations of the repository, and
collected ideas for its improvement in the next cycle.

We will present the results of each stage in the next sections.

5 The Asset repository system architecture

Metadata is a key part of the information infrastructure necessary to help create order
and provide a solid foundation for providing various information services such as de-
scriptions, classifications, organizations, store, search, creation, modification and ag-
gregation of information [16]. Rather than merely a software archive, the asset reposi-
tory is viewed as a system for managing the lifecycle of an asset. In the repository the
asset’s artefacts are collected and conceptually tied together by defining the metadata.
In addition, the repository allows for publication, updating, packaging for distribution
and quality assurance, while accommodating different end-user tools.

The RAGE asset software repository is at the core of the asset development infra-
structure. It is used to store and manage access to: (1) reusable game assets, (2) artefacts
(resources within game assets), (3) metadata for game assets and artefacts, and (4) re-
lationships between assets – dependencies, related assets, etc.

The Asset software repository leverages the discovery, development reuse and re-
purpose of game assets and artefacts. It will help both game asset developers and con-
sumers in all the activities relating to the game asset lifecycle.

The main functions of the RAGE Asset software repository are as follows:

• Searching, finding and browsing assets/artefacts
• Creating, updating, publishing, deleting and downloading assets/artefacts
• Versioning support, source code import from GitHub and integration with IDEs
• Harvesting of external repositories for game assets and metadata using the Open

Archives Initiative - Protocol for Metadata Harvesting (OAI-PMH)
• Reviewing and rating assets/artefacts

In order to implement these functions, we designed the asset repository infrastruc-
ture in three tiers (Figure 2): client, service and data store tiers.

Figure 2. Asset Repository Architecture

6 Implementation of the asset repository system architecture

The main result from the second stage – Acting, is the implementation of the Asset
repository. Fedora [17] is used for storing assets, metadata and artefacts; Sesame [18]
for managing RDF data and supporting classification and entities; and Solr [19] for
indexing and searching the repository. The data store tier consists of these three com-
ponents and is used to store game assets, artefacts, metadata, taxonomies and indexes:

• Fedora stores the game assets, artefacts and metadata using RDF as primary data
format. When the repository is updated by creating, modifying or deleting re-
sources, it generates specific events so that the Fedora indexer copies RDF from
the repository to an external triple store to keep it synchronized with the reposi-
tory. Fedora is flexible, well established and it ensures scalability and durability
(the complete repository can be rebuilt at any time).

• Sesame is an architecture for the efficient storage and expressive querying of
large quantities of metadata in RDF and RDF Schema. This includes creating,
parsing, storing, inferencing and querying over such data. Sesame RDF triple
store contains metadata from Fedora and classification taxonomies/vocabularies.

• Solr is an open source platform optimized for searching. Its major features are
full-text search, sophisticated faceted search, almost real-time indexing, dynamic
clustering of data, etc. It is used for creating full text indexes on the RAGE
metadata fields, as well as for realizing full text search and faceted search.

The service tier is used for access and preservation of the assets and artefacts. For
the implementation of this tier, we developed the following services that provide access
to the underlying data store tier:

• Fedora Services. Fedora provides a general RESTful HTTP API for accessing
repository resources through HTTP methods. It supports OAI-PMH [20] requests
on content and metadata in the repository.

• Sesame Services. Sesame offers a RESTful HTTP interface supporting the
SPARQL Protocol for RDF. It is a superset of the SPARQL and supports com-
munication for Update operations and the Graph Store HTTP Protocol [21].

• Solr Services. Apache Solr exposes Lucene’s Java API as REST-like API’s
which can be called over HTTP. The RESTful endpoints allow CRUD style op-
erations to be performed on the repository resources.

In addition, for the service tier to provide access to the client tier, we developed
Asset Services for composition and execution of workflows over RAGE Game Assets.

The client tier includes web-based applications, plug-ins for integrated development
environments (IDEs), and software components from the RAGE ecosystem that uses
the services supported by Asset Repository Infrastructure. It includes:

• The Asset Repository Manager – we developed a web-based application em-
bodying main functionalities for lifecycle management of assets and artefacts.

• IDE plug-ins – we developed rich clients consuming services from the Asset Re-
pository service tier, which thus allows developers to manage assets from within
their integrated development environment (IDE).

• Other software components from the RAGE ecosystem, such as the Ecosystem
Portal (EP), which harvests assets and metadata through an OAI-PMH service
provider from Asset Repository Service tier.

The Asset Repository services constitute an open interface for creating, modifying, de-
leting, and searching RAGE assets. They are realised on top of REST APIs, JSON,
JSON-LD [22] and RDF, using Software as a Service (SaaS) model in the cloud. Based
on the functionality exposed by these services, they can be grouped as:

• Asset Access Services defining an open interface for accessing assets within the
RAGE Asset Repository allow for retrieving asset packages and metadata, and to
search and browse for assets using keywords and metadata fields. The search in-
terface provides both full-text search and semantic search. Full-text search ena-
bles performing of natural language queries using keywords and phrases occur-
ring in any of indexed asset’s metadata elements. The semantic search is using
SPARQL for querying on asset metadata and SKOS taxonomies data represented
as RDF triples.

• Asset Management Services defining an open interface for administering assets,
including creating, modifying, and deleting, provide an abstract level of the oper-
ations, thus hiding the complexities of the internal formats, protocols and proce-
dures for storing an asset in the Asset Repository.

• Taxonomy Services defining an open interface for managing classification tax-
onomies and controlled vocabularies used in RAGE Asset Metadata Model [13]
to classify and describe an asset in educational and gaming contexts. For repre-
sentation and storing Asset Repository adopts SKOS standard [23].

• Authentication and Authorization Services provide access for organisational
needs. These services are implemented on top of Fedora Authentication and Au-
thorization framework [17].

7 Usage scenarios

In order to observe how the asset repository together with related client tools can
support the asset developers and other users, and how effective and useful the services
are, which it is offering, we have designed various usage scenarios. Also, asset devel-
opers and game developers have been involved for evaluating the functioning and usa-
bility of the repository. In this section we will present the scenarios, and in the next
section will present the main conclusions based on the observations of real users.

To populate the repository with metadata we used four usage scenarios. The first
scenario is publishing/updating a game asset through the web-based interface offered
from the Asset Manager. The asset developer signs in, creates/selects an asset, en-
ters/updates metadata and uploads artefacts or a packaged asset (see Figure 3).

The second scenario is publishing/updating a game asset from GitHub. The asset
developer again should sign in the Asset Manager, creates/selects an asset, provides the
GitHub repository identifier and credentials (if required). The files (artefacts) and
metadata from GitHub are automatically harvested and published in the RAGE Asset

Repository (using the GitHub API [24]). The user should also supply the rest of the
required metadata.

Figure 3. Using the RAGE Asset and Artefact managers, the RAGE Metadata editor and the

RAGE Taxonomy selector to populate the repository

In the third scenario, we tested publishing/updating a game asset from an IDE. For
this scenario we developed an Eclipse IDE plugin. The asset developer opens the asset
project in the Eclipse IDE; using the plugin the developer creates/updates the asset in
RAGE Asset Repository within the IDE, providing credentials and needed metadata.

The fourth scenario: Asset consumers can search for a game asset using full text or
advanced search, browse the repository, view assets metadata and download assets or
artefacts for reuse.

At the moment, the repository is populated with the metadata of 12 currently devel-
oped Assets in RAGE project.

8 Scenario evaluation

An evaluation of the usage scenarios was carried out by involving a group of 9 end
users, viz. asset developers from the RAGE project. Preliminary findings of this user
panel support the relevance of the repository system. Comments about the first version
of the repository and related client tools can be summarized as follows:

• Users can easily work with basic services such as searching, downloading or up-
loading assets to the repository.

• Users need more specific instructions how to populate the repository with
metadata.

• The metadata editor improved the process of populating the repository for users.

• Users encounter problems to identify the source of the information related to some
of the metadata fields, like keywords and others.

• There is a need to automate further the definition of metadata fields.

While the evaluation is preliminary and relatively informal, the initial acceptance is
positive, and confirms the viability of this first step within the RAGE Project.

9 Conclusions and future work

In this paper, we presented a unique software architecture supporting the lifecycle of
reusable software components for applied gaming. The main innovation is related to
the combination of RAGE Asset Model and RAGE Asset Metadata Model, backed up
with server-side infrastructure (repository and services) and many end user tools. The
software architecture plays a pivotal role within the RAGE Ecosystem, developed for
the RAGE project and is considered of strategic importance for the domain of applied
gaming.

The repository as the content core system of the RAGE Ecosystem allows for flex-
ible design and development of RAGE game assets and future search, packaging and
exchange. The current architecture guarantees both scalability and durability and the
approach. It also provides a high level of flexibility across different taxonomies and
standards.

Future work is planned on improving the architecture by providing support for
Quality Assurance, asset development workflows, harvesting of assets from external
systems and stores, social functions and for specific targeted support for the gaming
community. A first provisional launch of the repository integrated in the RAGE social
platform is expected in 2017.

Acknowledgements. This work has been partially funded by the EC H2020 project
RAGE (Realising an Applied Gaming Eco-System); http://www.rageproject.eu/; Grant
agreement No 644187.

References

1. García Sánchez, R., Baalsrud Hauge, J., Fiucci, G., Rudnianski, M., Oliveira, M., Kyvsgaard
Hansen, P., Riedel, J., Brown, D., Padrón-Nápoles, C.L., Arambarri Basanez, J.: Business
Modelling and Implementation Report 2, GALA Network of Excellence, www.galanoe.eu.

2. Stewart, J., Bleumers, L., Van Looy, J., Mariën, I., All, A., Schurmans, D., Willaert, K., De
Grove, F., Jacobs, A., Misuraca, G.: The Potential of Digital Games for Empowerment and
Social Inclusion of Groups at Risk of Social and Economic Exclusion. Joint Research
Centre, European Commission, Brussels. http://ftp.jrc.es/EURdoc/JRC78777.pdf (2013)

3. RAGE: Project Web site (2015) http://www.rageproject.eu .
4. Ackerman, L., Elder, P., Busch, C.V., Lopez-Mancisidor, A., Kimura, J., Balaji, N.A.:

Strategic reuse with asset-based development, IBM RedBooks (2008) http://www.redbooks.
ibm.com/redbooks/pdfs/sg247529.pdf

5. Kattau, S.: Atego launches RAS-based asset repository, SD Times Magazine, February 13,
2013, http://sdtimes.com/atego-launches-ras-based-asset-repository/#ixzz3wwMlvLJ8

http://www.rageproject.eu/

6. Hong-min, R., Zhi-ying, Y., Jing-zhou, Z.: Design and Implementation of RAS-Based Open
Source Software Repository, Proc. of te Sixth Int. Conf. on Fuzzy Systems and Knowledge
Discovery, Vol.2, pp.219-223 (2009).

7. Moura, D. S.: Software Profile RAS: estendendo a padronização do Reusable Asset
Specification e construindo um repositório de ativos, Master’s thesis, Univ. Federal do Rio
Grande do Sul, Brasil (2013) http://www.lume.ufrgs.br/handle/10183/87582

8. Hilliar, G.: Developing Cross-Platform Mobile Apps with HTML5 and Intel XDK, in Dr.
Dobb's Journal, UBM plc. (2014)

9. Böhm, T., Klas, C.-P., Hemmje, M.: Supporting Collaborative Information Seeking and
Searching in Distributed Environments. In Proc. Of the LWA 2013 Conference, Bamberg,
Germany, pp 16-20 (2013).

10. Stefanov, K., Nikolov, R., Boytchev, P., Stefanova, E., Georgiev, A., Koychev, I., Nikolova,
N., Grigorov, A.: Emerging Models and e-Infrastructures for Teacher Education, 2011
International Conference on Information Technology Based Higher Education and Training
ITHET 2011, IEEE Catalog Number: CFP11578-CDR, ISBN: 978-1-4577-1671-3.

11. Dekkers, M.: Asset Description Metadata Schema (ADMS). W3C Working Group (2013)
12. Van der Vegt, G.W., Westera, W., Nyamsuren, N., Georgiev, A., Martinez Ortiz, I.: RAGE

architecture for reusable serious gaming technology components, International Journal of
Computer Games Technology, Vol 2016 (2016), http://dx.doi.org/10.1155/2016/5680526 .

13. A. Georgiev, A. Grigorov, B. Bontchev, P. Boytchev, K. Stefanov, K. Bahreini, E.
Nyamsuren, W. van der Vegt, W. Westera, R. Prada, P. Hollins, P. Moreno. The RAGE
Software Asset Model and Metadata Model, Serious Games, 2nd Joint Int. Conference, JCSG
2016, Springer, V. 9894 Lecture Notes in Computer Science, pp. 191-203, 2016.

14. Martin, James: Rapid Application Development, Macmillan, 1991.
15. Hollins, P. Westera,W. Manero Iglesias, B.: Amplifying applied game development and

uptake, In Proceedings of 9th European Conference on Game-Based Learning ECGBL
2015, pp. 234-241, Steinkjer, Norway (2015)

16. Duval, E., Hodgins, W., Sutton, S., Weibel, S. L.: Metadata principles and practicalities. D-
lib Magazine, 8(4), DOI: 10.1045/april2002-weibel (2002).

17. Woods, A.: Fedora 4.3 Documentation https://wiki.duraspace.org/display/FEDORA43/
18. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for Storing

and Querying RDF and RDF Schema. First International Semantic Web Conference, Lecture
Notes in Computer Science, pp 54--68, Springer Verlag (2002).

19. Smiley, D., Pugh, E., Parisa, K., Mitchell, M.: Apache Solr 4 Enterprise Search Server, Packt
Publishing, ISBN: 9781782161363 (2014).

20. Lagoze, C., Van de Sompel, H.: The Open Archives Initiative Protocol for Metadata
Harvesting (2015) https://www.openarchives.org/OAI/openarchivesprotocol.html

21. SPARQL 1.1: SPARQL 1.1 Overview, W3C Recommendation (2013)
22. JSON-LD 1.0: A JSON-based Serialization for Linked Data, W3C Recommendation (2014)
23. SKOS: Simple Knowledge Organization System Reference, W3C Recommendation (2009)
24. GitHub API: GitHub Developer Guide (2016) https://developer.github.com/v3/\
25. M. B. Carvalho, F. Bellotti, R. Berta, A. De Gloria, G. Gazzarata, J. Hu, M. Kickmeier-Rust:

A case study on Service-Oriented Architecture for Serious Games, Entertainment
Computing 6(2015), pp. 1-10, DOI:10.1016/j.entcom.2014.11.001

26. A. Gloria, F. Bellotti, R. Berta, and E. Lavagnino, “Serious Games for Education and
Training,” International Journal of Serious Games, Vol. 1, No. 1, 2014, pp. 100-105,
ISSN: 2384-8766

https://developer.github.com/v3/

	1 Introduction
	2 Related work
	3 RAGE Software Assets
	4 Our approach
	5 The Asset repository system architecture
	6 Implementation of the asset repository system architecture
	7 Usage scenarios
	8 Scenario evaluation
	9 Conclusions and future work
	Acknowledgements. This work has been partially funded by the EC H2020 project RAGE (Realising an Applied Gaming Eco-System); http://www.rageproject.eu/; Grant agreement No 644187.
	References

