
The RAGE Software Asset Model and Metadata Model

A. Georgiev1, A. Grigorov1,6, B. Bontchev1, P. Boytchev1, K. Stefanov1*, K. Bah-
reini2, E. Nyamsuren2, W. van der Vegt2, W. Westera2, R. Prada3, Paul Hollins4,

Pablo Moreno5

1 Sofia University "St. Kliment Ohridski", Faculty of Mathematics and Informatics, Bulgaria
{atanas, alexander.grigorov, bontchev, boytchev, stefa-

nov}@fmi.uni-sofia.bg
2 Open University of the Netherlands, The Netherlands

{kiavash.bahreini, enkhbold.nyamsuren, Wim.vanderVegt,
Wim.Westera }@ou.nl

3 University of Lisbon, Portugal
rui.prada@tecnico.ulisboa.pt

4 The University of Bolton, UK
pah1@bolton.ac.uk

5 Universidad Complutense de Madrid, Spain
pablom@fdi.ucm.es

6 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
grigorov@math.bas.bg

Abstract. Software assets are key output of the RAGE project and they can be
used by applied game developers to enhance the pedagogical and educational
value of their games. These software assets cover a broad spectrum of function-
alities – from player analytics including emotion detection to intelligent adapta-
tion and social gamification. In order to facilitate integration and interoperability,
all of these assets adhere to a common model, which describes their properties
through a set of metadata. In this paper the RAGE asset model and asset metadata
model is presented, capturing the detail of assets and their potential usage within
three distinct dimensions – technological, gaming and pedagogical. The paper
highlights key issues and challenges in constructing the RAGE asset and asset
metadata model and details the process and design of a flexible metadata editor
that facilitates both adaptation and improvement of the asset metadata model.

Keywords: serious games, software assets, game assets, asset model, asset
metadata model, metadata editor, gamification.

1 Introduction

In accordance with the requirements of the European Horizon 2020 Research and In-
novation Program, the RAGE project1 aims to develop and provide open advanced
technology modules (assets) for applied gaming and to make these assets available

1 http://rageproject.eu/

through a repository that encourages further development, sharing reuse and repurpos-
ing of the assets. The assets address pedagogically oriented functions that support
game-based learning, particularly in the capture and assessment of user data and the
support of strategic interventions and social representations in the game. The purpose
of these assets is to support game studios in developing high-quality, pedagogically
authentic applied games.

RAGE game assets will be stored in the game asset repository, a central component
of a RAGE Applied Gaming Ecosystem. In this context many of the existing ap-
proaches and methodologies used by game development companies cannot be directly
applied as they typically focus on design and development of bespoke domain-specific
games.

In this paper we try to provide answer to the following main research problem, iden-
tified in the RAGE project: How do we enrich and transform advanced gaming tech-
nologies into self-contained assets for applied gaming that facilitate essential pedagog-
ical functions, that can be linked together into higher level aggregates and that can be
easily integrated in existing game platforms?

2 The RAGE Asset definition and model

A RAGE Asset is defined as a self-contained solution that demonstrates economic value
potential, based on advanced technologies related to computer games, and intended to
be reused or repurposed across a variety of game platforms. The RAGE assets comply
with the asset definition of the W3C ADMS Working Group [19], which refers to ab-
stract entities that reflect some “intellectual content independent of their physical em-
bodiments”. In principle, not all assets include software, e.g. media assets, common in
game development, may refer to graphical objects, audio files, videos and other such
objects. This paper focuses specifically on the software assets. The RAGE assets con-
tain advanced game technology components (software), enriched and transformed to
support applied games development. They are supported by value adding services and
attributes (artefacts), such as instructions, tutorials, examples and best practices, in-
structional design guidelines and methodologies, connectors to major game develop-
ment platforms and content authoring tools/widgets for game content creation. These
additional artefacts not only support but enhance assets usage. Fig. 1 provides an exem-
plar of a RAGE asset and related artefacts.

In order to preserve the software asset’s portability across different game engines
and platforms, a component-based asset architecture has been described and validated
elsewhere [1]. This architecture addresses both the internal workings of an asset and
the level of interaction of assets with the outside world, including the mutual commu-
nications between assets. The RAGE architecture avoids any dependencies on external
software frameworks and minimize any code that may hinder integration with game
engines. Furthermore, it relies on a limited set of standard software patterns and well-
established coding practices.

A centralized Asset Manager component is included as a coordinating agent, which
is used for the registration of the assets and for the use of shared code that is commonly
used by multiple assets, such as the name and the type of the game engine, or user
login/logout info for assets that would need a user model.

Fig. 1. Example of a RAGE Asset

Proofs of concept in four principal code bases (C#, Java, C++ and TypeScript/Ja-
vaScript) have validated the RAGE architecture [1]. In addition, the easy integration of
the HAT asset (difficulty adaptation routine) in three different game engines (Unity,
MonoGame and Xamarin) has been successfully implemented [2], demonstrating the
portability and flexibility of the RAGE asset architecture.

Using interoperability components or named assets in game development involves
three different broad disciplines from computer science: software engineering (because
the assets are implemented in games as software components), game development (as
the assets are integral elements of different games) and Technology-Enhanced Learning
(TEL) (as the assets should provide additional pedagogic “values” to the games).

In the following paragraphs we present the principal outcomes across these three
related disciplines related to our research (section Related work), further we define the
RAGE Asset Metadata model, and finally discuss our initial implementation findings
in relation to the research question, highlighting key issues to be addressed.

3 Related work

In the gaming domain the term asset is often applied to media files to be incorporated
in a game. The Intel® XDK HTML5 Cross-platform Development Tool2 offers an asset
manager for game development in conjunction with several game platforms. Here as-
sets are considered as audio-visual game objects, to be included in a project. Similarly,
the Unity Asset Store3, which is a prosumer-based community and market for game
assets, is dominated by such media assets, these are imported and used in the Unity
game engine. Historically game developers would apply the term asset for such media
files rather as opposed to software artefacts, the Unity Asset Store is increasingly in-
cluding software assets, e.g. code for physics, special effects, controller software,
Graphical User Interface software, Artificial Intelligence, and maze generation.

2 https://software.intel.com/en-us/html5/tools
3 https://www.assetstore.unity3d.com

However, this particular and quite specific definition of assets in game world is not
useful for the RAGE project purpose. For a more detailed understanding of how to
describe and classify assets, we start with the analysis of best practices from the Tech-
nology-Enhanced Learning domain (TEL) and the games for learning (applied gaming
and serious gaming) domain.

By exploring a variety of game ontologies/taxonomies, we have an established po-
sition on classifying assets as game components. The best suited to the RAGE project
are from two related propositions: SharpLudus Game Ontology [5] as well as the Game-
Based Learning Systems (GBLS) Ontology initiative [6]. They both define the main
structure and functions of applied games and their relationships with the TEL domain.
One of the directions in applied games research is linked with the mapping of game
mechanics and learning activities [7]. By exploring the LM-GM model (Learning Me-
chanics – Game Mechanics), the study addresses the similarities between game me-
chanics and educational components at the implementation level. A simplified game
model based on Bloom's theory is in a similar vein. Peeters [8] present an ontology
related to applied games, consisting of 6 main areas: Task domain, Trainee, Didactics,
Instructor, World, and System. A mapping between game activities, learning activities
and learning resources was presented by Prensky [9].

Very close to these ideas is an approach based on the concept of educational game
design patterns. In general, applied games design patterns should be based on the well-
established knowledge of game design patterns [10], with the addition of a second foun-
dation besides entertainment: pedagogy. A major conceptual tool for better applied
game design is the definition of pedagogically informed game design patterns. Kiili
[11] identified a number of patterns, proposing six categories addressing key educa-
tional aspects. The mapping of learning functions onto game design patterns was pre-
sented by Kiili [12].

Whilst these efforts have attempted to link game design with learning design, an-
other approach is based on extending the IEEE Learning Object Metadata (LOM) stand-
ard with additional features reflecting the game functionalities and how they affect
learning. The SG-LOM profile adds new fields to the LOM categories “Educational”,
“Annotation” and “Classification” [13]. Hendrix [14] proposed a metadata schema for
describing applied games also as an extension of the IEEE LOM standard by supple-
menting the number of fields to IEEE LOM and having two different levels. In [15]
applied games are regarded as active learning objects (LO) that exchange information
with the host Learning Management System (LMS) for tracking and assessment pur-
poses.

An asset in the Information Technology (IT) domain of is generally defined as a
collection of related artefacts that provides a solution to a problem [16]. Some asset
definitions are restricted to content and/or media rather than software. For instance,
Niekerk [17] distinguishes three major groups of “digital assets”: textual assets (digital
assets), images (media assets), and multimedia assets (a combination of different con-
tent forms). The IMS content packaging information model [18] likewise uses the word
asset to describe the term resources: “the resources described in the manifest are assets
such as Web pages, media files, text files, assessment objects or other pieces of data in
file form”.

IBM´s Reusable Asset Specification (RAS) [16] uses a high level definition of an
asset as “a collection of related artefacts that provides a solution to a problem”, allowing

it to package together as an asset almost anything: Models, Design documents, Patterns,
Web services, Frameworks, Components, Requirements documents, Test plans, Test
scripts, Deployment descriptors, Model templates, UML profiles, Domain specific lan-
guages, etc. The W3C specification of the Asset Description Metadata Schema [19]
defines an asset as an abstract entity that reflects some intellectual content. An asset
differs from an asset distribution, which is typically a downloadable computer file (but
in principle it could also be a paper based document or API response) that implements
the intellectual content of an Asset.

A model-driven serious games development framework is defined by [20]. They
present a platform-independent model incorporating nine core units, namely user inter-
faces, models of game content, game technology and game software, Model Driven
Engineering (MDE) tools, components library (involves art assets, artificial intelli-
gence, physics and e-learning sites), code templates, artefacts, technology platform, op-
erating platform and software. The implementation of this model was presented in [21].

4 RAGE Asset Metadata Model

Metadata is an essential part of the information infrastructure and is critical for creating
information services including description, classification, organization, store, search,
creation, modification and aggregation of information [3]. Metadata models define the
essential characteristics of information assets [4] describing their key components and
functions. These models influence and support key services required for asset manage-
ment including cataloguing, workflow to create and store the assets, how to use, reuse
and repurpose assets, etc. Additionally when users or processes interact with the assets,
this interaction takes place within the metadata model framework.

The RAGE asset metadata refer to machine-readable information such as keywords
and semantic information that can be used by the repository’s search engine. Metadata
also include information that is essential for running the asset software in an operational
environment, e.g. on a game platform. The metadata includes version information and
data about dependencies from other software assets. Consequently, the definition of the
RAGE Asset metadata model is a key element in the RAGE project, which enables
authentic implementation of the RAGE Ecosystem for the development and exchange
of RAGE assets.

Before defining the metadata model, we performed an extensive needs assessment
study [24], including asset developers, educators and game producer. In order to sup-
port identified set of services through the software repository and other related tools
and, in parallel, to be close to the specified domain of reusable gaming components
(RAGE software assets), the RAGE metadata model is focused on the following main
aspects:

• Technical – how the RAGE asset might be used by game developers. We follow the
RAGE asset model which describes assets as software components.

• Contextual classification – here we focus primarily on the pedagogical, educational
and game characteristics, whilst leaving space for further characteristics.

• Usage – not restricted to how to install and configure the software, but also providing
additional artefacts such as training materials, tutorials, educational goals, etc.

• Intellectual Property Rights – to enable various business models proposed by
RAGE project to be implemented.

Whilst designing the model, we broadly adhered to general metadata design princi-
ples as specified in [3]:

• Reusability – reusing where possible existing metadata models, standards and avail-
able taxonomies and ontologies. We reuse parts of the RAS and ADMS metadata
fields as well as parts of the LOM taxonomy.

• Flexibility – to easily facilitate extension of the metadata description of an asset with
additional features and characteristics.

• Simplicity – we define most of the fields as not mandatory in order to easy the efforts
of asset developers. We plan to develop tools for automatic extraction of the most
important metadata field values.

The RAGE asset metadata model reuses and extends the specifications of RAS [16]
and ADMS [19]. We have chosen the approach to use a core subset of RAS (see ele-
ments Asset, Solution, Usage, Artefacts, Requirements, Design, Implementation, Tests
from Table 1. Description of RAGE metadata schema elements) and extend it with el-
ements from ADMS (like Classification, Context, Concepts), IEEE LOM (used inside
Classification and Context) and metadata related to the applied games domain. We
could not use LOM (or even SG-LOM) directly, as it does not provide features for
describing compound software objects. The most comprehensive and close to our needs
RAS model is too general and complex, has slow adoption and is difficult for users [13,
15, 16]. It is also not consistent with current Software Engineering (SE) practices, as it
supports the “waterflow” model for software development. For this reason we simplify
significantly elements reused from RAS, and changed some details. The ADMS does
not provide support for external artefacts and, similar to LOM, is lacking support for
important SE features.

Several taxonomies are used as different Conceptual schemes inside the Context for
describing educational elements such as Learning Goals, Knowledge transfer, Skills,
Educational Disciplines, Teaching Phase, Learning Purpose, Educational Context, etc.

Although the internal representation of the RAGE metadata in the asset repository
is in RDF, we have chosen to use XML as a manifest file format (a special file that
contains information about the files packaged in a RAGE asset package) and an XML
schema for the model for the following reasons:

• If the manifest file in the asset package is in RDF, it is difficult to validate it – as
demonstrated in [22].

• The URIs of the asset and artefacts are automatically generated after the asset is
ingested in the repository so we cannot use them in the manifest beforehand.

Thus, we have chosen to use an XML schema for validation of the manifest files
and to follow the approach used by the Europeana4 project for representing RDF in

4 http://www.europeana.eu/portal/

XML. We have used some of the XSD schema files used by Europeana5 and modified
them according to the specifics of the RAGE project. This approach provides for auto-
matic validation of manifest files and easy transformation from XML to RDF and vice
versa.

The RAGE Metadata Model defines the format of asset metadata as an XML
schema, which is implemented in all tools that require the processing of these metadata,
e.g. a package metadata editor, the asset repository, asset installation widgets, etc.

Fig. 2. The RAGE metadata schema

The XML schema represented by a UML class diagram in Fig. 2 can be interpreted
while taking into account the following issues [23]:

• A UML class represents a complex XML element. For example, Asset is a complex
XML element that has XML attributes and/or child elements.

• Within a UML class definition, the prefix «attr» denotes that the corresponding field
is an XML attribute (and not a child element).

• Within a UML class definition, a field without «attr» prefix denotes a child element
nested inside the element represented by the UML class definition. The field repre-
sents either a new definition of a simple element or a reference to an element (either
simple or complex) defined in a referenced schema (e.g., dcterms).

5 https://github.com/europeana/corelib/tree/master/corelib-edm-

definitions/src/main/resources/eu

rage:Asset

«attr»name [1..1]: xs:string
dcterms:title [1..*]: xs:string
dcterms:description [1..*]: xs:string
dcterms:type [1..1]: skos:Concept
dcterms:date [0..1]: xs:date
dcterms:language [0..1]: xs:string
dcterms:creator [1..*]: foaf:Agent
dcterms:publisher [1..1]: foaf:Agent
rage:owner [0..1]: foaf:Agent
dcat:keyword [0..*]: xs:string
rage:versionInfo [1..1]: xs:string
adms:versionNotes [1..1]: xs:string
adms:status [1..1]: skos:Concept
dcat:accessURL [0..1]: xs:anyURI

rage:RelatedAsset

«attr»name [1..1]: xs:string
«attr»minVersion [1..1]: xs:string
«attr»maxVersion [1..1]: xs:string
dcterms:description [1..*]: xs:string
rage:relationType [1..1]: xs:string
dcat:accessURL [0..1]: xs:anyURI

rage:Artefact

«attr»name [1..1]: xs:string
rage:reference [1..1]: xs:stringI
dcterms:title [0..*]: xs:string
dcterms:description [0..*]: xs:string
dcterms:type [0..1]: skos:Concept
dcterms:date [0..1]: xs:date
dcterms:creator [0..*]: foaf:Agent
dcterms:publisher [0..1]: foaf:Agent
rage:versionInfo [0..1]: xs:string
dcterms:format [0..1]: xs:string
dcat:accessURL [0..1]: xs:anyURI

rage:Solution

dcterms:description [0..*]: xs:string

rage:Requirements

dcterms:description [0..*]: xs:string

rage:Design

dcterms:description [0..*]: xs:string

rage:Tests

dcterms:description [0..*]: xs:string

rage:Implementation

dcterms:description [0..*]: xs:string
rage:gameEngine [0..1]: skos:Concept
rage:gamePlatform [0..1]: skos:Concept
rage:progLanguage [0..1]: skos:Concept

rage:Usage

dcterms:description [0..*]: xs:string

rage:Classification

dcterms:description [0..*]: xs:string

0..*

0..1

0..* 0..*
0..*

0..*

1

1

0..1 0..1

0..11

0..*

rage:Context

«attr»name [1..1]: xs:string
dcterms:title [0..*]: xs:string
dcterms:description [0..*]: xs:string
dcat:themeTaxonomy [1..1]: skos:ConceptScheme
dcat:theme [0..*]: skos:Concept

1..*

rage:License

dcterms:title [0..*]: xs:string
dcterms:description [1..*]: xs:string
dcterms:type [1..1]: skos:Concept
dcat:accessURL [0..1]: xs:anyURI

0..*

0..*

• Composition connection denotes a parent-child relationship between two complex
elements defined in the RAGE Metadata Schema (RMS).

Table 1. Description of RAGE metadata schema elements provides a textual de-
scription of the XML elements of the RAGE metadata schema.

Table 1. Description of RAGE metadata schema elements

Asset
A self-contained solution that demonstrates economic value potential, based on
advanced technologies related to computer games, and intended to be reused or
repurposed in a variety of game platforms and scenarios.

Classification
Includes a set of descriptors for pedagogical classification of the asset (learning
goal, learning functions, educational patterns used, etc.) as a learning object, as
well as a description of the educational context(s) for which the asset is relevant

Context
Defines a conceptual frame, which helps explain the meaning of elements in the
asset (game context where asset can be used, educational context, and links be-
tween game and learning mechanics in the game).

Concept Scheme A vocabulary, thesaurus or taxonomy used for organizing concepts.
Concept Represents a particular concept within a vocabulary, thesaurus or taxonomy.
Solution Describes the artefacts of the asset.
Usage Contains information for installing, customizing, and using the asset.
Related Assets Describes the asset’s relationship to other assets.

Artefact Any physical element of an asset corresponding to a file on a file system. Artefacts
can include also version and license information.

Requirements Contains artefacts that specify the asset requirements such as models, use-cases,
or diagrams.

Design Contains artefacts that specify the asset design such as diagrams, models, interface
specifications, etc.

Implementation Has a collection of artefacts that identify the binary and other files that provide the
implementation.

Tests Contains artefacts (models, diagrams, artefacts, and so on) that are intended to de-
scribe the testing of the asset such as testing procedures, concerns and test units.

License Contains conditions or restrictions that apply to the use of an asset or artefact, like
is it in the public domain, can it be used for non-commercial purposes, etc.

Agent Describes a person or organization that is a contributor (creator, publisher, and
owner) of an asset or artefact.

5 The RAGE Metadata Editor

An important aspect of the metadata usability is the development of a metadata editor.
This is a tool that facilitates the modification of asset metadata. The design of the RAGE
metadata editor follows principles similar to these of the RAGE asset metadata model
design in that:

• Simplicity – the editor hides the internal complexity of the metadata representation;
• Flexibility – the interface is generated on-the-fly, based on the metadata schema;
• Usability – various features for increasing the user comfort while editing metadata.

The visual simplicity is a principle that focuses on the user experience with the
metadata editor. The metadata schema uses 7 different metadata structures that capture
the spectrum of various data types and relations of asset descriptions. For example,
there are data which are stored as attributes, as simple data entities or as sequences of

data. There are data which are conditional, or which have values from some predefined
vocabulary. The editor hides this complexity and the user is not exposed to the internal
structure of the metadata.

Fig. 3 represents a small fragment from a sample asset’s metadata. It demonstrates
how four of the different internal types are visualized consistently. For example, the
Name of an asset, marked by (1), is internally stored as an XML tag attribute; the Title
(2) is a simple string datum, the Creator (3) is an optional field, which is currently set
to Organization and the elements Name, Mbox and Homepage (4) of the creator form
a sequence of data, describing the creator’s organization.

Fig. 3. Sample asset metadata visualized by the editor

Each metadata entry could be defined with a set of additional properties, like cardi-
nality, current language, etc. They are also presented in the user interface. The small
list boxes to the right of some metadata fields, like Description (5), allow the user to
set the language of the content. The Description has cardinality 1+, which means that
it is compulsory (marked by red asterisks) and it may have several instances (marked
by the small +DESCRIPTION (6) buttons below the metadata box).

The principle of flexibility means that the editor is not bound to a fixed metadata
structure. Instead, it reads the metadata description, extracts the schema file and then
recursively processes schemas until it reconstructs the full structure of the metadata.
Currently, except for the main asset metadata schema (stored in DefaultProfile.xsd), the
editor also processes ADMS (Europeana’s Asset Description Metadata Schema),
DCAT (Data Catalog Vocabulary), DCTerms (Dublin Core Terms), FOAF (Friend-of-
a-friend Schema) and RDF (Resource Description Framework).

Once the editor is familiar with the metadata structure, it builds the corresponding
interface. Then it populates it with the actual metadata of the asset. This may recursively
request the editor to generate new sections of the interface, if there are many instances
of metadata with 0+ or 1+ cardinality. Because the actual structure could easily become
too complex, the editor arranges the user interface elements in collapsible nested
blocks.

The main advantages of a dynamic metadata editor are: (1) changes in the structure
of RAGE asset metadata do not require corresponding changes in the RAGE metadata

editor; this allows the RAGE project the flexibility to adapt and improve the metadata
model with minimal impact on other project software; and (2) the editor builds the in-
terface by examining the schemas referenced by the metadata. As a result, it is possible
to feed the editor with another metadata and other schemas. In this way the asset
metadata editor can be used as a metadata editor of other RAGE entities, such as asset
packages and artefacts.

When the interface is completely collapsed, it fits into a single screen and displays
the most basic metadata of an asset like its name, description, keywords, versions, etc.

Fig. 4. The RAGE Taxonomy Selector used within the RAGE Metadata Editor

The classification of assets is implemented as references to taxonomies’ concepts.
To provide a convenient interface to concept selection the Metadata Editor embeds the
RAGE Taxonomy Selector. This selector provides an interactive approach to select
items from RAGE taxonomies that can be used to classify assets. Fig. 4 shows the Tax-
onomy Selector embedded in the Metadata Editor. The currently selected taxonomy is
Knowledge Transfer (1) and the selector is (2).

After a user completes the editing of asset metadata, the editor generates an XML
file. Prefixes are used in order to make XML tags shorter and easier to comprehend.
Tags are aligned horizontally and vertically to provide clues for the hierarchy of
metadata sections. Such styling easies the manual metadata manipulation during the
initial phases of the software development.

6 Conclusion

In this paper we discussed a new approach for providing reusability, repurposing and
interoperability of game software components called assets. The RAGE asset model is
introduced, and the problem of how to describe applied game software assets in a ma-
chine-readable way to be used by game developers to add pedagogical and educational
value to their games is discussed.

The paper presents in detail two key outputs for the RAGE project – the RAGE
metadata model and the RAGE metadata editor. Both are created using simple design
principles providing flexibility and reusability. The RAGE metadata model extends a
core subset of RAS with elements from ADMS, IEEE LOM and applied games
metadata. Its metadata schema provides support for the metadata of game artefacts,
software engineering features and learning objects, this makes it very promising and
useful for any applications dealing with applied gaming assets. The proposed interface
of the metadata editor is driven by the RAGE metadata schema, but any structural
changes in the RAGE asset metadata will not incur further changes in the metadata
editor. Moreover, its interface changes automatically when feeding the editor with other
metadata schemas. This makes it useful for editing other metadata such as these of asset
packages or artefacts.

Both the RAGE metadata model and RAGE metadata editor provide a basis for
classification, search and retrieval of gaming assets, by using references to taxonomies’
concepts through a Taxonomy Selector. The generated XML file represents structurally
the asset metadata and facilitates both software interoperability in game development
and usage of assets’ educational values for technology-enhanced learning applications.

Acknowledgements. This work has been partially funded by the EC H2020 project
RAGE (Realising an Applied Gaming Eco-System); http://www.rageproject.eu/; Grant
agreement No 644187.

References

1. van der Vegt, G.W., Westera, W., Nyamsuren, N., Georgiev, A., Martinez Ortiz, I.: RAGE
architecture for reusable serious gaming technology components, International Journal of
Computer Games Technology, Vol 2016 (2016), http://dx.doi.org/10.1155/2016/5680526

2. van der Vegt, G.W., Nyamsuren, N., Westera, W.: RAGE reusable game software components
and their integration into serious game engines, accepted in the proc. Of the 15th Interna-
tional Conference on Software Reuse (ICSR-16) (2016).

3. Duval, E., Hodgins, W., Sutton, S., Weibel, S. L.: Metadata principles and practicalities. D-
lib Magazine, Vol 8(4), DOI: 10.1045/april2002-weibel (2002).

4. Windsor, R.: Metadata Models: What They Are And Why You Need One For Successful
Digital Asset Management, WebDAM white paper (2014) https://webdam.com/blog/what-
are-metadata-models-pt-1/

5. Furtado, Andre: SHARPLUDUS: Improving game development experience through software
factories and domain-specific languages, MSc Thesis, University of Pernambuco, Brasil
(2006).

6. Raies, K., Khemaja, M.: Towards gameplay ontology for game based learning system design
process monitoring, in TEEM '14 Proceedings of the Second International Conference on
Technological Ecosystems for Enhancing Multiculturality, ACM New York, USA, pp. 255-
260 (2014)

7. Arnab, S., Lim, T., Carvalho, M. B., Bellotti, F., de Freitas, S., Louchart, S., Suttie, N., Berta,
R., De Gloria, A.: Mapping learning and game mechanics for serious games analysis. British
Journal of Educational Technology. Special Issue: Teacher-led Inquiry and Learning De-
sign. Volume 46, Issue 2, pp 391–411 (2015).

8. Peeters, M., Van den Bosch, K., Meijer, J.-J.Ch., Neerincx, M.A.: An Ontology for Integrating
Didactics into a Serious Training Game. Proc. of the 1st Int. Workshop on Pedagogically-
driven Serious Games (PDSG 2012), S. Bocconi, R. Klamma, and Y.S. Bachvarova (eds),
CEUR Workshop Proceedings, volume 898, CEUR, Aachen, ISSN 1613-0073, pp. 1-10
(2012)

9. Prensky, M.: Digital Game-Based Learning, McGraw-Hill (2001).
10.Björk, S., Holopainen, J.: Patterns in Game Design, Charles River Media, Boston, MA (2004).
11.Kiili, K.: Call for learning-game design patterns. Chapter in the book: Edvardsen, F. & Kulle,

H. (eds.). Educational games: design, learning and applications, Nova Publishers (2010).
12.Kiili K., T. Lainema, S. de Freitas, S. Arnab: Flow framework for analyzing the quality of

educational games, Entertainment Computing 5 (4), pp. 367-377 (2014).
13.El Borji, Y., Khaldi, M.: An IEEE LOM Application Profile to Describe Serious Games «SG-

LOM», International Journal of Computer Applications, Volume 86 – No 13, DOI
10.5120/15042-3404 (2014).

14.Hendrix, M., Protopsaltis, A., Rolland, C., Dunwell, I., de Freitas, S., Arnab, S., Petridis, P.,
et al.: Defining a Metadata Schema for Serious Games as Learning Objects. In the Proc. of
the Fourth International Conference on Mobile, Hybrid, and On-line Learning eLmL 2012,
pp. 14–19 (2012)

15.Torrente, J., Moreno-Ger, P., Martínez-Ortiz, I., Fernandez-Manjon, B.: Integration and De-
ployment of Educational Games, in e-Learning Environments: The Learning Object Model
Meets Educational Gaming. Educational Technology & Society, 12 (4), pp. 359–371 (2009).

16.Ackerman, L., Elder, P., Busch, CV., Lopez-Mancisidor, A., Kimura, J., Balaji, N.A.: Strate-
gic reuse with asset-based development, IBM RedBooks (2008).

17.van Niekerk, A. J.: The Strategic Management of Media Assets; a Methodological Approach.
Allied Academies, New Orleans Congress (2006).

18.IMS-CP: IMS Content Packaging Specification (2004) https://www.imsglobal.org/ con-
tent/packaging/index.html.

19.ADMS: Asset Description Metadata Schema (ADMS), W3C proposal standard (2013)
http://www.w3.org/TR/vocab-adms/

20.Tang, S., Hanneghan, M.: A Model-Driven Framework to Support Development of Serious
Games for Game-based Learning. Paper presented at the 3rd Int. Conf. on Developments in
e-Systems Engineering (DESE2010), London, UK (2010).

21.Tang, S., Hanneghan, M., Carter, C.: A Platform Independent Game Technology Model for
Model Driven Serious Games Development, The Electronic Journal of e-Learning, Volume
11, Issue 1, pp.61-79 (2013)

22.Isaac, A.: Europeana and RDF data validation, Position paper from W3C RDF Validation
Workshop, 10-12 Sept. 2013, https://www.w3.org/2001/sw/wiki/images/9/9b/
RDFVal_Isaac.pdf

23.Fowler, M., Scott, K.: UML distilled, Second edition. A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley Longman Publishing Co., Inc., Boston (1999).

24.Saveski, G. L., Westera, W., Yuan, L., Hollins, P., Fernández Manjón, B., Moreno Ger, P., &
Stefanov, K.: What serious game studios want from ICT research: identifying developers’
needs. In: A. De Gloria and R. Veltkamp (Eds.), Proceedings of the GALA 2015 Conference,
December 7-8, Rome, Italy, LNCS 9599, pp. 1–10. DOI: 10.1007/978-3-319-40216-1_4

	1 Introduction
	2 The RAGE Asset definition and model
	3 Related work
	4 RAGE Asset Metadata Model
	5 The RAGE Metadata Editor
	6 Conclusion
	Acknowledgements. This work has been partially funded by the EC H2020 project RAGE (Realising an Applied Gaming Eco-System); http://www.rageproject.eu/; Grant agreement No 644187.
	References

