ik

ET Jr——

A —

Physica 106B (1981) 3346
North-Holland Publishing Company

THE ac IMPEDANCE OF ELECTRO—-ACOUSTICALLY ACTIVE CdS

W. WESTERA and R. J. J. ZIJLSTRA

Fysisch Laboratorium, Rijksuniversiteit Utrecht, The Netherlands

Received 25 September 1980

The ac impedance of electro—acoustically active semiconductors is calculated and measured. The need for nonlinear
equations is avoided by the assumption that the observed electro—acoustic effects can be described by the trapping of
bunches of free charge carriers in potential troughs which are coupled to the amplified acoustic waves. The potential
troughs are created and annihilated at random throughout the crystal. The creation rate and annihilation rate of the
troughs are essentially electric field dependent. Furthermore, the effects of the displacement current, the diffusion
current, the space charge, and anisotropy are taken into account. Measurements of the ac impedance between 0.5 and
100 MHz made on single crystals of semiconducting CdS are in good agreement with the calculations. The impedances show
a low frequency roll-off (1 MHz) and resonances that are related to the transit time of potential troughs.

1. Introduction

Amplification of travelling acoustic waves as a result

’ . . . . . . .
of interaction with supersonic drifting charge carriers

in piezoelectric semiconductors, i.e. the electro-acoustic
effect, has been a subject of continuous interest for
many years. An ultrasonic wave which propagates in a
piezoelectric semiconductor will be accompanied by a
piezoelectric field which in turn acts on the mobile
charge carriers. While the establishment of a space
charge wave is a pre-requisite for. the existence of
coupling between charge carriers and an acoustic wave,
it is apparent that the interaction vanishes at high
frequencies through diffusion and at low frequencies
through the dielectric relaxation mechanism. It follows
therefore that optimum amplification is obtained at
frequencies determined by the angular diffusion fre-
quency wrp) and the angular dielectric relaxation
frequency w¢. After the first experimental results of
ultrasonic amplification in CdS were reported in 1961
by Hutson et al. [1], White [2] in 1962 gave a linear
description of the electro-acoustic effect, known as the
linear small signal gain theory. White did in fact find
the frequency of maximum amplification to be w,,
= (conD);‘; in all piezoelectric semiconductors this
value lies in the GHz-range.

From Brillouin scattering- [3], microwave emission-

[4], and sound-amplification [1] data it is known

that the amplification process can only be described
by the linear small-signal gain theory at low acoustic
flux intensities. At higher acoustic flux intensities, or
rather at higher electric field strengths, many non-
linear effects become important; these include para-
metric interaction of acoustic waves, current saturation,
large current fluctuations, electro—acoustic domain
formation, impedance effects and so on, which cannot
be described by linear theories. We must bear in mind
that the large current fluctuations and the impedance
effects appear at low frequencies (MHz range). Several
authors [5, 6] have tried to describe these phenomena.
Since however it is very difficult to describe these non-
linear effects, when starting from basic principles,
many of these phenomena are not yet understood
quantitatively.

In 1967 Moore [7] avoided the need to use non-
linear equations by suggesting that the observed current
saturation and current fluctuations are caused by
bunching of free charge carriers in potential troughs,
which are coupled to the amplified acoustic waves via
the piezoelectric effect. He described the observed
current fluctuations in CdS by a trough creation—
annihilation process.

In 1978 Zijlstra and Gielen [8] modified this
theory by accounting for transit time effects in a local
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description. They neglected the displacement and the
diffusion current in the expression for the current
density and assumed that the creation and the anni-
hilation of troughs are independent of electric field
strength. Their calculation resulted in a frequency-
independent impedance. Experimentally, however, the
observed ac impedance of electro—acoustically active
CdS crystals turned out to be frequency dependent
[9]. In fact experimental results showed that in addi-

tion to the familiar dielectric roll-off, there was another,

lower frequency roll-off in the range of 1 MHz.

In 1965 Greebe [10] used the linear small-signal
theory to calculate the effects, that boundary condi-
tions have on the impedance of semiconducting piezo-
electric plates. His results, however, were not applic-
able to electro—acoustically active semiconductors.

The aim of this paper is to show that the observed
frequency dependence of the ac impedance can be
explained if the local description is extended by taking
into account diffusion, space charge, displacement
current, the electric field dependence of the trough
creation and annihilation rates [11], and by allowing
for off-axis waves. It should be noted that this calcula-
tion holds for crystals where a continuous type of
amplified acoustic flux is observed (i.e. where no
travelling electro—acoustic domains are observed).

2. Theory

In this chapter we calculate the ac impedance of an
electro—acoustically active semiconducting crystal,
starting from the trough model. It is assumed that on
the time scale considered the free carrier collision time
is small and that the mean free path of free charge
carriers is much smaller than the wavelengths involved
in the sound amplification process. Under these condi-
tions one can use a classical continuum description.
Furthermore, anisotropy effects are taken into account.

2. 1. Basic equations

We consider an n-type homogeneous piezoelectric
semiconducting crystal, where the electric field is
applied along a symmetry axis, the x s-axis. In the case
of CdS the x3-axis coincides with the c-axis. Together
with the x; and x,-axis the x 3-axis forms a cartesian
coordinate system. The sample is supplied with ohmic

contacts at x5 = 0 and x5 = L, where L is the contact
spacing.

When the drift velocity of the electrons v, exceeds
the sound velocity vy, travelling acoustic waves are
amplified from the thermal background. As a result of
the interference of the amplified acoustic waves, poten-
tial troughs which propagate with the sound velocity
in the direction of the anode, are spontaneously
created and annihilated throughout the crystal. Note
that the creation and annihilation occurs at random as
a result of the incoherent input of the amplification
process, i.e. the thermal phonon distribution.

As it is known from the literature [12], that under
these conditions it is transverse off-axis waves which
are amplified rather than longitudinal on-axis waves,
our calculation must describe the anisotropic propaga-
tion characteristics of acoustic waves and the aniso-
tropy of the piezoelectric and dielectric properties as
well. We shall consider off-axis sound waves and
indicate how the general form of the piezoelectric
relations and the wave equation can be reduced to the
simple one-dimensional form (cf. [13]).

In the analyses given below we used the sign con-
vention, when E < 0 and I <0, then ¥ > 0, where V'
is the applied voltage, E the electric field strength and
I the electric current.

Let ng and ng be the local densities of the free and
trapped electrons in the conduction band and let n be
the total electron density in that band; then

n=ny+n,. )

Gauss’s equation yields

oD; i}
—=—q(n - n), €))
ox;
where D; is the ith component of the dielectric dis-
placement, x the position, —q the electron charge.
The time average of » is denoted by 7 and is assumed
to be equal to the thermal equilibrium density of free
carriers; i is a subscript running from 1 to 3. It should
be noted that we have to carry out summation over
repeated subscripts (Einstein convention). The total
current density equation becomes

aD;

on
= —qngvg. — qng. +qD, —+—L, 3
]1 q d dl q sUs; q. njj ax] 8t ()
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where j is the total current density, Dy, a tensor des-
cribing the anisotropic diffusion, ¢ is time, vg and v
are the drift velocities of free and trapped electrons,
respectively. (Note that o is equal to the sound
velocity.) In addition, we have, since j is solenoidal

QO

-~

)

I

=0, “)

&

i

the piezoelectric relations

Ty = CijaaSkr — exijExs Q)
D; = ¢;E; + e, Si, (6)

Newton’s second law

T, 2 )
—_— = '”—u., .
o, o2
and
1 /0u; ‘au].
Sp=5 (Gt 52 ). ®
2 ax]- ox;

where Tij and S,-j are stress and strain tensor elements,
respectively, whereas Cijki» Cijk and €;; are the elastic,
piezoelectric and dielectric tensor elements, respec-
tively. E is the electric field strength vector, p the
mass density and # the displacement vector.

When p and b are the creation and annihilation
rate of troughs per unit volume, respectively, the
master equation for the trough density n, reads:

on, b on,
—=p-b—-v, —.
a %

©)]

In addition we make the approximation that each
trough contains /V electrons, where N does not depend
explicitly on x. Then the density of trapped electrons
becomes

ng= Nn;. (10)
2.2. The stationary state

If we realize that the electric field strength is
applied along the x;-axis, we have

dE,

—k=0, unlessk=j=3. 1)
axj

Because of the symmetry it is reasonable to assume
that the static displacement and strain components,

it; and S—'ij depend only on x 5. Therefore we obtain
(cf. eq. (8)):

$j=0, unlessi=3 prj=3,

0S;;
—7=0, unlesk =3. (12)
axk

In the stationary state eq. (7) yields

oT;; .
_=0. (13)
axj

With the help of egs. (5) and (13) we find
38y 3Ey

cijkl —a—x— - ekl-j—afx—.-= 0. (14)
] ]

Since it is known that in the case of crystals with a
hexagonal symmetry, such as those of CdS, c333;, =0
and c33;3 = 0 unless k = 3, eq. (14) becomes when

i = 3 with the help of egs. (11) and (12):

OFy _c3333 3533

— 15)
O0x3 e333 Ox3
From egs. (2) and (6) we find
aE—" + '3 0 (16)
€:; —=*+¢€.:7. — 8, =0.
j ik jk
! ox; ! ox;

Since for hexagonal crystals e33;, = 0 and e3;3 =0,
unless k = 3, we obtain from eq. (16) with the help of
egs. (11) and (12)

.8x3 633 6x3

From egs. (15) and (17) we may conclude that

——=_22=0, (18)
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Eq. (18) means among other things that we are dealing
with a uniform electric field strength E. 3. Thence U4,
is also independent of x3, so

v
Bay = ~H33E3 =337 (19)

where uy; are the free electron mobility tensor elements
and Vis the voltage applied to the sample. Since we
assumed that the donor centres are distributed uni-
formly throughout the crystal we may put

on 20
ox; ' )

Therefore in the stationary state the diffusion contri-
bution to the current density can be omitted. In view
of the rotational symmetry with respect to the x3-axis
we can write

)
—2=0, fori=1,2. 21)

Combining egs. (2), (3), (4), (20) and (21) we obtain

_ o omyg aﬁs _

With the help of egs. (1) and (20), we find from
eq. (22)
ofy

(6(13 - 683) 5x_3' =0. (23)

Since Ug, > O, for applied bias in excess of the thresh-
old voltage for amplification, we have [8]

QU
o

QO

N |

1]

E

1}
o

(24)

g
w

g
w

Note that (24) is also valid for vd3 Us, because in
that case 7i; = 0 and 714 = 7.

From the above it is clear that the expression for
the current becomes (egs. (3) and (19))

M33 V

I=—qAng,, - qAny (25)

where A is the contact area.

In earlier reports [8] it was assumed that 7, and 7i4
were voltage independent at sufficiently high voltages
since the /V-characteristics showed that there was a
linear relationship between I and ¥ in the electro—
acoustically active region (cf. eq. (25)). However, if the
knee voltage in the /V-characteristic, defined by the
intersection of the ohmic straight line with the line
mentioned above, does not coincide with the actual
threshold voltage for amplification, this approximation
is not allowed. In all cases known to the authors the
threshold voltage obtained at the onset of electro—
acoustic current fluctuations [8] is lower than the
knee voltage in the /V-characteristic. This means that
figand iy, and their deviations from the stationary
state values depend on V.

From the slope R~1 of the JV-characteristic below
the threshold voltage we obtain the mean charge
carrier density in the conduction band:

L

A= :
qAus3R

(26)

For amplification of an acoustic wave the ratio of the
component of the drift velocity in the direction of the
sound velocity and the sound velocity has to be larger
than unity. This is readily achieved for small off-axis
angles. Therefore the threshold voltage for amplifica-
tion of sound waves ¥V in our crystals is determined by
the phase velocity of transverse on-axis waves,
although the electromechanical coupling of these
waves is zero. So we have

V,==2—. @7

At increasing voltage the off-axis angle of maximum
amplification increases until it saturates at 30°,
because there is a maximum in the electromechanical
coupling factor at 30° [12]. It should be noted that in
view of this the trough velocity component along the
X 3-axis, 1753, used in eq. (25) depends essentially on
the applied voltage V.

When we use egs. (1), (25) and (26) we find when
V>V,

(%) L T+ VR 28)
a(V)= — .
* qAuzz (V = 0y, * L/u33)
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(Note that ¥ and T have opposite signs.)
As a consequence of egs. (1), (26) and (28) Aig (V) is
given by

(29)

2.3. The ac impedance

In the calculation given below we extend Greebe’s
impedance calculation of piezoelectric plates [10] by
including trough creation and annihilation processes
[11], and by allowing for off-axis waves.

For small deviations A from the stationary state we
have in first order approximation

Any op 0b
Ap—Ab=————+<— —-—> AE;,  (30)
with

< op b >-1
T=— ——— ,
ony  Ony/pn =0

the mean lifetime of fluctuations in the trough density,
where p and b depend explicitly on n; and E. Now,
with help of eq. (30), eq. (9) becomes

0An, Any 4 (i)p ob ) 0An,

—_— _— -V, —.
ot T aE, aE, AEi=0 ! ¥ ax]

(31)

By linearising eq. (3) and using

Avg, = —py; AE;, (32)

and

Avg, = —~u;~jAE]-, (33)

where u;-]- are the mobility tensor elements associated
with trapped electrons, we find

bj; = qQuyhg + i) AE; + q(@g, — B ) Ang

0An  _ 0AD;
+ anij Ex? — qui An + a_t . (34)

Eq. (9) becomes
Ang = N An, + i, AN. (35)

In addition we assume that the number of electrons
per trough N depends only on the electric field
strength; thence

AN = (aN) AE (36)
aE] AEI'=0 g

Equations (1), (2), (4), (5), (6), (7) and (8) can be
expressed in small deviations from the stationary state
in a trivial way. Before looking for solutions of our set
of equations it will prove useful to study the polarisa-
tion of the sound-wave-induced electric field strength
[13] and [15]).

When a sound wave moves along a general crystal

direction, the local electric field strength can be given
by

E(x, f) = E(x) + AE(x, 1), 37
with

AE(x, £) = AE,, el(@1=k"®),

k = (kgg + ikppk.

Note that k can be a complex vector, the real part of
which (kg k) is the ordinary wave vector, whereas
the imaginary part (kp\k) describes the amplification
of the sound wave. k is a unit vector in the direction
of the wave propagation.

Maxwell’s equations yield

)
VX (VX E)= —ugu* 5;1’, (38)

where u, is the free space permeability and u the
relative permeability tensor. It should be remembered,
that j is the total current density vector. When we
assurne that u * j = j, we find the following expression
for the time varying electric field component AE(x, t):

—K2AE + k(k + AE) = —pgiwA, (39)

where k2 = (k * k) and Aj is the current density.
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If we assume that lkpy/kggl <1, i.e. the amphflcanon
is close to unity over one wavelength, and use w /kRE
eq (39) can be rewritten as

AE — k(k * AE) = (5)** w_i_m (40)

The left hand side of eq. (40) yields the transverse
component of AE. To estimate the order of magnitude
of the transverse component of AE it is convenient to
replace Aj by 0 AE, where o is a typical conductivity
for the samples under study. Eq. (40) now becomes:

AE — .

I K(K AE)' ( 3)2 “00 (41)
|AE]

It can be shown that in all practical cases the magni-

tude of the transverse electric field component can be

neglected with respect to |AE] if reasonable values for

the unknowns are inserted into the right hand side of

eq. (41). (For example we used &, = 2 X 103 ms™}, Mo

=1.26 X 106 Hm™!, 6 <100 (2 m)~! and

w>1055s1)

Therefore for the acoustic-wave-induced electric field

strength we may write

AFE = AF - k. 42)
From eq. (8) we obtain the strain tensor elements
ASij = %AS(TriKi + njp(i), 43)

where = is a unit vector along the direction of the
acoustic polarisation and AS is a scalar strain ampli-
tude.

Equations (1), (2), (4)—(8), (31), (34)—(36) form a
set of 11 linear homogeneous differential equations in
11 variables, AT, AS, AE, AD, AN, Au, Aj, Any, Ang,
Ang and An, which can be solved by considering solu-
tions of the type expi(wt — k * x). When k =0 we
find a trivial solution. After some algebra the disper-
sion relation for k # 0 becomes, when eqs. (42) and
(43) are used (note that { when not used as a subscript
is the imaginary unity):

pw?=c*'k?, (44)

where
c*=c*[1+ K:ZB*] ,
the effective elastic constant,

iTiCijk1 KK

the effective piezoelectric
constant (We used e;;; = €;; in
hexagonal crystals.),

%*
e = Kieijkﬂ'ji(k,

=K€K the effective dielectric constant,

*y2-2
K*=|:(e ) ]2y
€ e*c*

g = [1 s ko) L+ of +o%+ o’gr
e* (k2D + i(w — kg k) ’

— (/9 ob
o* = —ql')s'y*N{(—p - —) K },
0B; OEi/ap;=0

N Uq,Ki . )
y*=1—-—2—, the effective drift parameter,

s

the effective electromechanical
coupling factor.

N ' -
MR = Kk, BT = Kugk, 07 = qutag,

e
0% = qu'*ng,

oN
* — = % *K;
OF;/aE;=0

DKDK

iDnyi Ko the effective diffusion constant.

From eq. (44) we see that all electro-acoustic effects
on wave propagation are described by a new elastic
constant ¢*'. The solution of eq. (44) can now be
simplified if it is assumed that the coupling between
the acoustic waves and the electrons is small; in other
words the electronic amplification will not change the
acoustic wave amplitudes by more than a few per cent
over one wavelength.

Accordingly we assume that

IKE2p*| < 1. (45)

Since 8* is still unknown, conditinn (45) should be
verified later on for consistency. This small coupling



R

IR - S SRRTE Y

W. Westera and R. J. J. Zijlstra/The ac impedance of electro—acoustically active CdS 39

approximation implies that ¢*' (and therefore k as
well) contains a small imaginary part. When condition
(45) holds, eq. (44) becomes a quadratic equation in k
with solutions (we used 7 = (c*/p)V2) given by

w
k=ky~— (1~ 378D,
S

and

k=ky~—— (1 — bKE25). (46)

Us

Note that the terms Kezﬁ’f, 5 are not neglected with
respect to unity because they contain a small imaginary
part.

Setting k1 ~ w/0 in B} and ko =~ —w/; in B3, and
introducing the angular diffusion frequency wp) = 1')52 /
D} we find

(-5
By (’)’ le

S *
['y*—i(i+a T+01+0§+03>]
*

wh e*w
and
w
B§=<2—7*—i—*>/ @7)
“wp

[2_7*_1 w +a*(1/r+2iw)_1+o’f+o’5+o’§>]
wh e*w

Now that we have found the dispersion relations,
the solution of our basic equations for any variable
Ay(x, 1) at fixed angular frequency w can be written
as a linear combination of plane waves with wave
numbers k = 0 representing a solution with no position
dependence, k = k; representing a plane wave travelling
along k and k = k, representing a plane wave travelling
in the opposite direction. So in general we have

Ay(x, 1) = yoeiwt _l_ylei(wt—kl . x) +y2ei(wt—k2.x),

48)

where Ay, yq, y; and y, are tensor, vector, or scalar
quantities. It should be noted that the result obtained
describes only the behaviour of off-axis waves with
wave vector direction k. In practice, however, we shall
deal with a distribution of off-axis angles. In section 4
we shall discuss the effects of this distribution.

We shall first return to our basic equations to derive
some useful relations between the plane wave ampli-
tudes of our variables for each mode separately. When
k =0 it follows from egs. (8), (42) that

Somik; =0, 49)
from egs. (6), (42), (49) that

kDo, = €*Ey, where Eo, = Egk;, (50, 51)
from egs. (5), (49) that

miK; TOi], = —e*E, (52)
and from egs. (31)—(36), (44) and (50) that

jo, = le*(U/r +iw) ™ +of +0f + 0§1Egk;.  (53)

When & =k, or k = k, we find from egs. (5), (7), (8)
and (44) that

*
e
1:kATy o) = — ————= Eq1 5, (59)
i ]( 1,2)11 ﬁi 2K:2 1,2
and from eq. (4) that
(]'1’»1' =0. (55)

The choice of boundary conditions allows us to deter-
mine the relative magnitudes of the three modes (cf.
eq. (48)). For free end-surfaces it is convenient to take
the boundary conditions to be:

ﬂlK]{(TO)lj + (Tl)l} e_ikl.x + (T2)1] e_ik2'x}ei“’t = 0,
(56)

at the cathode, x = 0, and at the anode x = L'k, where

L'=L/(x * e3) and e is a unit vector along the X 3-axis.

When we use egs. (52) and (54) we obtain from
eq. (56)
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5 *26*[ e—ikzL' 1 :I
1 =KP| DL mikL | o

and

. ik L
E =._K*ZB* _i.—__ - E 57
2 e P2| Tl ik | Fo (7

The alternating voltage with angular frequency w
developed along the x3-axis is given by

L
AV=— [ [Bg+Eje k1% 4 pe-tkax]eion gy
0
(58)
where x5 is the position at the x3-axis and
X3 *K
x= . (59)
K * e3

From egs. (53), (57), (58) and (59) we finally obtain
the ac small signal impedance at angular frequency w:

L
A@M (11 + iw) + oF + 0% + 0% + iwe®)

Z(w)

y {1 N KX e "l _pye~ikal _ 1) (ik, 6% — ikzﬁ’f)}
L'kky(e 1l _ ikl ‘
(60)

Substituting reasonable values for the unknowns in eq.
(60) it is found that the term containing K ;‘2 only
contributes significantly at frequencies given by

1)
=Cm+1) =, m=0,1,2,3,.... 61
f=( )2L, (61)

Note that L'/l')s is the transit time of the sound waves.
Three limiting cases are of interest for our measure-
ments (i) w = 0; then eq. (60) becomes

Z(0) (62)

A(a*r + ot +0%)

(03 vanishes, because u;j is assumed to go to zero
when w ~ 0.)

o] + 03 + 0% +a*/(1/7 + iw)

(i) w > = ; (63)
then
Z()~ ==, (64)

which)corresponds to the dielectric roll-off of a device
with capacity C= e*4/L.

(iii) intermediate frequencies, where

*

@

of + o} +05>|iwe* + ——|.
/7 +iw)

Then we find an impedance which is given by

L

—_— 65
A(oT + 05 + 03) (63)

Z(w) =

2.4. Additional results

Although the main purpose of this section was to
calculate the ac-impedance, it should be noted that
one can obtain some other interesting results. The
imaginary parts of k; and &, (cf. eq. (46)) yield the
attenuation coefficients o, of waves travelling to the
anode and a,, of waves travelling in the opposite
direction, respectively. In fact it turns out that

K:z(a*'r + ol + 05 + o3)y*
20,€*

o*r + o + 0% + 0} 271
i . (66)

&, () = —im (ky) =

w
Wp

and that

K;“z(a*r/(l + 4w212) +of +03+03)

5 oe¥
20.€

ae2(w) =im (k,) =

20*r? )

X (2 e —
v e*(1 + 4w?r?)
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2*2 2
| mra)
e*(1 + 4w*7%)

N < w N o*r/(1 + 40?72 + o} + o5 + U§‘>2:|‘1

wh e*w

67)

These expressions reduce to White’s result for the
linear attenuation coefficient [2],.when we choose
o* + 7=0and replace o} + 6% + 0% by the conduc-
tivity o.

From eq. (66) we see directly that @, is negative
(amplification) if y* <0, i.e. 4 > D /k 5 (experimental
results show that the term (¢*7 + o + 05 + 0%) is
always positive). From eq. (67) we find that a,, is
positive (attenuation) if v* <2 — (20*r2)/

{e*(1 + 40?72} (the term (a*7/(1 + 4w?r?) + o]
+o% + og‘) is always positive. Since the experiments
show that a™ < 0 (cf. section 4) it follows that in all
cases where troughs are present (04 > 0/k 3) %, is
positive, i.e. back-travelling waves are always atten-
uated.

As a final result we mention the frequency of
maximum amplification of waves travelling to the
anode, f,, which can be obtained from eq. (66)

* * * *1/2
.a T+01+02+03:|/

1 [ *
—_—— w
Im 27 D e*

The frequency of maximum attenuation for waves
travelling to the cathode is more complicated to derive
and will not be discussed here.

Since the term a*7 + o] + 05 + 0% is allowed to
depend on the applied voltage, £, is allowed to be
voltage dependent as well. It seems very likely that
the downshift of £, at increasing bias voltage as
reported by several authors (cf. [16]) can be inter-
preted in terms of eq. (68). The most interesting
feature is that f,) can be determined with the help of

parameters obtained from ac impedance measurements.

3. Experimental arrangement

We used semiconducting CdS single crystals with a
resistivity of 0.3 € m provided by the Eagle Picher

(68)

Company. Measurements were done in the longitudinal
configuration (Elic-axis).

Before evaporating indium onto the contact faces,
we polished the two contact faces mechanically within
0.25 um. Two opposite side faces were polished as
well to enable us to carry out Brillouin scattering
experiments on these crystals at a later stage.

Thin copper wires were ultrasonically soldered to
the contacts.

The contact spacing L and contact area 4 of the
samples were as follows:

Sample: L =1.53X 1073 m;
A=1.00X 0.80X 107% m?2,

Sample II: L =1.40X 1073 m;
A=1.00X0.72X 107° m?.

The sample lengths were kept smaller than 2 X 103 m
to suppress electro—acoustic domain formation,

which would give rise to a highly nonlinear electric
field distribution in the samples [7] .

To avoid Joule heating of the samples the high
voltage was applied in pulses of 40 us with a repetition
rate of 4 Hz. These pulse lengths, which were much
longer than the transit times of acoustic waves
(=1 us), allowed the samples to reach a stationary
state.

The experimental set-up for the impedance measure-
ments is shown in fig. 1.

The low pass filter was used to suppress the higher
harmonics of the voltage pulse, whereas the high pass
filter protected the sine wave génerator output stage
against remaining transients of the voltage pulse. These
filters limited the frequency range for impedance
measurements to frequencies above 400 kHz. The high
frequency limit for impedance measurements turned
out to be 100 MHz. This value was determined by the
metal film resistors which were used for reference and
by parasitic capacitances.

To suppress the huge broad-band noise generated
by the electro—acoustic effect we used a HP 8558 B
spectrum analyser (input resistance 50 £2) as a band
pass filter with a bandwidth of 300 kHz at low fre-
quencies and a bandwidth of 1 MHz at high frequencies.
The IF-output (21.4 MHz) of the spectrum analyser
was fed into a switch which only transmitted the
signal between 5 and 35 us after the onset of the bias
pulse. The transmitted power was measured with an
HP 435 A power meter.
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CDS CRYSTAL

PULSE LOW PASS Zx ”] nF | SPECTRUM
SWITCH
GENERATOR [ FILTER I H ANALYSER —
50 50
Q Q
POWER
SINE WAVE HIGH PASS METER
GENERATOR [ | FILTER _
Rref InE
n
50 50
Q Q

Fig. 1. Experimental set-up for measurements of the absolute value of the impedance under pulsed bias conditions.

To determine the absolute value of the ac imped-
ance of the samples, we measured the power meter
deflection with the sine wave generator switched on
(P,) and the background power (P,) caused by electro—
acoustic current fluctuations and the equivalent input
noise of our measuring circuit in the absence of the
sine wave signal. Thereupon we interchanged Z, and
R, ¢ and measured P; (sine wave generator switched
on) and background P, (sine wave generator switched
off). If | Z, | and R ¢ (Which was always chosen to be
of the same order of magnitude as | Z,|) are large com-

pared to 25 , it can be shown that Z_ is given by:

Py-P,
1Z |2 ~—=2—2-R2. (69)
X Pl —P2 IC!

4. Results and discussion

Fig. 2 shows the current voltage characteristic of
sample II. At low voltages the sample is ohmic, at
about 130 V the current starts to deviate from the

300
T(mA) o’
200}
. SAMPLE I
100} .
i
. — V(Volt) i
1 1 1 1
0 100 200 300 400 500

Fig. 2. Current—voltage characteristic of sample II.
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ohmic behaviour and at voltages above 190 V we
obtain a linear relationship between I and V (cf.
section 2). Similar results were obtained for sample I.
The observed linear relationship at high voltages
between I and V yields

vV

where 1/R is the slope of the curve at high voltages
and —/; the extrapolated intersection with the current
axis. Inserting eq. (70) into eq. (28) we find that at
high voltages the voltage dependence of Fts(l_/) is given
by

P)- L Iy+VQR- 1Ry

= —— (71)
qApzz V=0 L/u33

N}

When we define the knee voltage ¥} as the inter-
section of the ohmic curve with the curve given by
eq. (70), eq. (56) can be rewritten as
A7) = L Ry-R _ V—— Vi ‘
qAuzz RgR V=0 L/uss

(72)

From this equation it is obvious that r'z's( V) becomes

voltage independent, when V. coincides with 653L/u33.

Note that from eq. (27) it follows that 553L/”33
SV, always.

Earlier reports [9] showed that the knee voltage
Vi in the IV characteristic is in most cases somewhat
higher than the voltage defined by the onset of the
electro—acoustic current fluctuations V. We there-
fore measured the power of the current fluctuations as
a function of the applied voltage and extrapolated the
electro—acoustic current fluctuations to the thermal
current noise level [9] in order to determine the
threshold voltage V.

For our samples V,, appeared to be about 0.8 times
Vy.» which means that 7 (V) is voltage dependent.
However, so far we have no physical explanation for
the voltage dependence of i ('), given in eq. (71), or
rather for the observed linear ¥V characteristic at high
voltages (cf. eq. (70)).

For sample I we obtained ¥, = 125 V. When we use
the sound velocity of transversal on-axis waves o, = 1.8
X 103 m 51, we obtain with the help of eq. (27) u33

=2.20X 102 m? V=1 57! which is in good agreement
with the reported value of the mobility in the literature
[17]. Sample II showed the same result within 10%.

From the threshold voltage, from the IV charac-
teristic and from Brillouin scattering data as well it was
clear that only transversal acoustic waves were ampli-
fied. From the IV characteristics and the threshold
voltages obtained we could calculate the quantity
fiy(V) with the help of eq. (28).

In fig. 3 the quantity 7 /7 is plotted as a function
of V/V, for sample II. We used u33 = 2.2 X 10~2 m?
V-1s1and 5 =1.8 X 103 ms~1. Furthermore it was
assumed that the off-axis angle was 30°, an assumption
that is certainly not valid when (V — V,)/V, <1 [12].
Consequently the calculated values of 7,/7 will be a
little too small when (V — V_)/V_ < 1. However, this
approximation will not alter the qualitative interpreta-
tion of fig. 3. The trapping starts at voltages close to
V; with increasing voltage the acoustic energy density
increases, causing more electrons to become trapped in
potential troughs. From egs. (26) and (72) we can
deduce the saturation value of 7y/7 for V > oo

fzs(I_/)=Rd -R

B} (73)
V> n Rd
1.0
= L.t
SAMPLE O
0.5}
1 1 1
0 1 2 3 4
v
— (W)

ljig. 3. Relative trapped electron density 71g/n as a function of
V/V, for sample IL.
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From fig. 2 we find for sample II a saturation value of
0.95. Sample I shows a similar behaviour, and also has
a saturation value of 0.95.

Fig. 4 shows the result of an impedance measure-
ment at 150 V for sample I as a function of frequency.
Besides the low frequency roll-off, we observe reso-
nances which appear at frequencies given by the odd
harmonics of 500 kHz. Since transverse off-axis waves
with wave vectors making an angle from 10° to 50°
with the direction of the electric field strength (or the
c-axis) are expected to be amplified [12], the reso-
nances predicted by eq. (61) will be smoothed out over
a larger frequency interval. This smoothing out will
occur because in practice we have a distribution of
trough velocities which corresponds with a distribution
of transit times. This explains why the observed reso-
nances are much wider than those given by eq. (61).
From eq. (61) we find an off-axis angle of 32° (we
used 0 = 1.8 X 103 m s71).

The solid line in fig. 4 is calculated with the help of
eq. (60). An unambiguous fit to the measurements can
be obtained by taking 7 =1.79 X 10~7 5, &* = —5.77
X 106 (2 ms)~Land of + 0% + 0% =2.77 (Q m)~L.

It should be noted that in eq. (60) we assumed that u'*
is a constant in the frequency range considered (in fact
observing an impedance plateau at intermediate fre-
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quencies eq. (64) yields u'* is a constant at inter-
mediate frequencies).

From the IV characteristic we find with eq. (29) at
150V 7ig = 7.6 X 1020 m=3, 50 6% = 2.66 (2 m)~1,
and with eq. (28) i, = 1.8 X 1020 m—3. From eq. (62)
and the differential resistance in the IV characteristic
|Z(0)| at 150 V we obtain

a*r — 0¥ =-035(Qm)L.

o= -
A1Z(0)l
It follows therefore that 0% = 0.46 (2 m)~!, which
means that u'*=1.6 X 102 m2 vV-1s-1,

However, we must realize that the low frequency
roll-off is obscured somewhat by the resonances.
When we estimate the uncertainty in the product a7
to be around 20% for this case and the uncertainty in
|Z(0)| and o7 to be 10%, the error in 0§ becomes 106%
and in 6% and u"* 100%. Thus, it is obvious that one
should be careful in drawing quantitative conclusions
from the above.

Fig. 5 shows the ac impedance at 184 V for sample
I1. Again we observe a low frequency roll-off and
resonances. The resonances obviously are the odd
harmonics of 560 kHz and yield with eq. (61) an off-
axis angle of 29°, which is in good agreement with the

15

1.0

1z1(kQ)

!

1 ! 1 | !

SAMPLE [

L

—» FREQUENCY f(Hz)
1 1 It

L 1 J

105 2 3 7 106

107 10

Fig. 4. The absolute value of the ac impedance Z of sampie I at 150 V (y* = —0.014). The solid line gives the best fit impedance
calculated with the help of eq. (60). Resonance frequencies are indicated by arrows.
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121 (kQ)

T T T

SAMPLE T

2L
| TTFREQUENCY 1(H2)
" L N | ' A 1 " L J
2 3 7
10° 10° 10’ 10°

Fig. 5. The absolute value of the ac impedance Z of sample II at 184 V (v* = —0.41). The solid line gives the best fit impedance

calculated with the help of eq. (60). Resonance frequencies are

result obtained for sample I. The solid line was calcu-
lated with eq. (60) using 7 = 1.29 X 10~7 5, a* = —1.25
X 107 (2 ms)~! and of + 0% + 0% = 1.62 (2 m)~L.
From the IV characteristic we find at 184 V: 77y = 4.4
X 1020 m=3, 0% = 1.56 (Q m)~1, A = 4.9 X 1020 m~3
and 0% = 1.8 X 10~2 (2 m)~!. Consequently we find
03=42X 10"2(Qm)Land pu'* = 5.35 X 10-4 m?2
V-1 5-1, When we estimate the error in a*7 to be
around 20% for this case, the error in | Z(0)| to be 5%
and in o] to be 10%, it follows that the error in 0% is
around 700% and in 0% and pu'* 500%.

Additional impedance measurements were done on
samples with contact spacings which were significantly
different from those of the samples I and II. These
experiments again yielded off-axis angles of about 30°,
which is a further experimental affirmation of the
present theory.

From our experimental data it was obvious that in
all cases condition (45) was fulfilled.

A value of & < 0 has the physical meaning that an
increase in the applied voltage causes an increase in the
number of troughs, whereas a value of ¢3 > 0 means
that the number of electrons per trough decreases
when the applied voltage is increased.

Impedance measurements at voltages below ¥,
showed a constant ac impedance equal to the ohmic

indicated by arrows.

resistance obtained from the IV characteristic, at all
frequencies.

From our experimental results it was obvious that
(—a™*7) increased continuously when the bias voltage
was increased. From eq. (68) we see that because
o*7 < 0 the frequency of maximum amplification f,
will continuously shift towards lower frequencies with
increasing voltage. The authors believe that the down-
shift of f,, as a result of parametric down-conversion
of interacting waves [15] can be explained by the
present theory and can be related to the frequency
dependence of the ac impedance.

More experimental data are necessary to complete
the physical picture of the voltage dependence of the
introduced variables and the relation between imped-
ances and frequency down-conversion of acoustic
waves. However, it is clear that problems concerning
the ac small signal impedance can be understood in a-
very simple way.
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