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A theoretical model is presented to describe electro-acoustic effects in single crystalline materials. The calculations,
which are essentially linear, are based on the assumption that the electro-acoustic effects can be described by the trapping
of bunches of free charge carriers in two types of potential troughs. One type of trough is associated with acoustic waves,
which are amplified from the thermal background, travelling in the direction of the drifting carriers; the second type is
associated with waves with large amplitudes travelling in the opposite direction. It is assumed that the two types of troughs
are independent, and that they are created and annihilated at random throughout the crystal.

\ Expressions are derived for the IV-characteristic, the current noise, the ac impedance and the wave attenuation
' coefficients. In these calculations the anisotropy of the crystal is taken into account. When space charge, diffusion and the
displacement current are neglected, the calculated noise spectra consist of two Lorentzians. The ac impedance, which is
calculated without making these approximations, shows two low-frequency roll-offs and resonances that are related to the

transit time of potential troughs. Finally some remarks on dispersion effects are made.

1. Introduction

The first theoretical description of the electro-
acoustic effect, i.e. the amplification of travelling
acoustic waves in piezoelectric semiconductors
where an electric drift field is applied, was given
in 1962 by White [1] in the form of a linear
classical continuum theory. Some years later
Brillouin scattering studies of the growth of the
acoustic flux in semiconducting CdS [2,3]
showed that this linear theory applies only in the
weak acoustic flux region. At higher acoustic flux
intensities, however, the frequency of maximum
amplification of acoustic waves was found to be
an order of magnitude lower than predicted by
the theory. The failure of the linear theory is due
to the appearance of essentially non-linear
effects at higher acoustic flux intensities. These
effects may include current saturation, large cur-
rent fluctuations, ac-impedance effects, parame-
tric down-conversion of waves, electro-acoustic
domain formation, current oscillations and so
on [4,5]. We shall direct our attention mainly

to current saturation, current fluctuations and
ac-impedance effects.

Several authors [6,7] have tried to describe
the non-linear effects. Since, however, this is
very difficult when starting from basic principles,
many of these phenomena are not yet under-
stood. Already in 1962 Smith [8] proposed that
the observed current saturation is due to the
bunching of free charge carriers in potential
troughs, which are coupled to the amplified
acoustic waves via the piezoelectric effect. Ac-
cordingly, in 1967 Moore [9] avoided the need
for non-linear equations to describe the large
current fluctuations by suggesting that these
fluctuations are caused by the random creation
and annihilation of potential troughs. The
expression obtained by Moore for the current
noise spectrum gave a reasonable explanation for
his experimental data. Subsequently Friedman
[10] and Nakamura [11, 12], using different ap-
proaches, were less successful in describing these
experimental data.

In 1978 Zijlstra and Gielen [13] modified
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Moore’s calculation by accounting for transit
time effects in a one-dimensional local descrip-
tion. They neglected the dielectric displacement
and the diffusion current in the expression for
the current density. In addition they assumed
space-charge neutrality and also assumed that
the creation and annihilation rates of troughs are
independent of the electric field strength. The
resulting transit time effects in the current noise,
however, are very sensitive to the choice of the
boundary conditions. Since the boundary con-
ditions which they chose imply an inconsistency
at low frequencies, their calculated result for the
current noise should be considered doubtful.
Furthermore, their calculation resulted in a
frequency-independent impedance. Experiment-
ally, however, the ac impedance of electro-acous-
tically active CdS turned out to be frequency
dependent [14]. A

In 1965 Greebe [15] used the linear small-
signal gain theory to calculate the effects that
boundary conditions have on the impedance of
semiconducting piezoelectric plates. His results,
however, were not applicable to electro-acous-
tically active semiconductors.

Recently Westera et al. [5,16] derived an
expression for the ac impedance, starting from
the trough model, while taking into account
diffusion, space charge, the displacement current,
the electric field dependence of the trough crea-
tion and annihilation rates and anisotropy
effects. The result was in good agreement with
the experimental data on CdS. It was found,
however, that the relaxation times derived from
additional current noise spectra [17] differed
markedly from those obtained from the ac im-
pedance [18]. This-inconsistency can be removed
by introducing into the theory two types of
potential troughs, with two corresponding relax-
ation times. This theory, which will be treated
here, is again a local description and essentially
linear. Furthermore, anisotropy and dispersion
effects are taken into account. It should be noted
that this theory holds for crystals where a con-
tinuous amplified acoustic flux is present (i.e.

where no travelling electro-acoustic domains
occur). For a comparison of this theory with
experimental results on CdS, the reader is refer-
red to refs. [17-19].

In section 2 the basic equations for our cal-
culations are introduced. In section 3 the equa-
tions for the stationary state are given. In section
4 the spectral current noise intensity is cal-
culated. An expression for the ac impedance is
derived in section S. In section 6 expressions for
the acoustic attenuation coefficients are given;
some concluding remarks on the effects of dis-
persion of the acoustic waves are presented in
section 7.

2. Basic equations

A classical continuum description is applic-
able, if it is assumed that the free carrier inter-
collision time is small on the time-scale con-
sidered, and the mean free path of free charge
carriers is much smaller than the wavelengths
involved in the sound amplification process.

We consider an n-type homogeneous piezo-
electric semiconducting crystal, where the elec-
tric field is applied along a symmetry axis, the x3
axis. In the case of CdS the x; axis coincides with
the ¢ axis. Together with the x; and x, axes the
x3 axis forms a Cartesian coordinate system. The
sample is provided with ohmic contacts at x3 =0
and x;= L, where L is the contact spacing.

When the drift velocity of the electrons
exceeds the sound velocity, acoustic waves, oOri-
ginating from the thermal background and
travelling in the direction of the drifting elec-
trons, are amplified. As a result potential troughs
which propagate with the sound velocity are
spontaneously created and annihilated
throughout the crystal. Note that the creation
and annihilation occurs at random because of the
incoherence of the thermal background waves.

Since it is known from the literature [16,20]
that under these conditions transverse off-axis
waves are amplified rather than longitudinal on-
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axis waves, our calculation must include the
anisotropic propagation characteristics of acous-
tic waves as well as the anisotropy of the piezo-
electric and dielectric properties. We shall con-
sider acoustic waves with an arbitrary polariza-
tion and propagation direction and show how the
general form of the piezoelectric relations and
the wave equation can be reduced to the more
simple one-dimensional form (cf. ref. [4]).

There is experimental evidence [17, 18] that
two relaxation mechanisms are involved in the
electric phenomena to be described. Relaxation
times obtained from current noise spectra are
considerably smaller than those obtained from
ac-impedance measurements. Therefore we shall
introduce two types of potential troughs, each
with a different decay time.

If the electric field is applied along the c¢ axis,
the amplification (or attenuation) coefficient for
acoustic waves is a function of the angle between
the wave vector and the ¢ axis, the off-axis angle
8 [4,21]. Therefore, acoustic waves with wave
vectors lying on a cone centred around the ¢
axis, with a half-cone angle 8, are amplified to
the same extent. If the crystal end-surface at
x3=L (anode) acts as a perfect mirror, the wave
vectors of reflected acoustic waves also lie on a
cone, with the same half-cone angle 6. Although
the amplification coefficient of acoustic waves is
generally not a delta function of the off-axis
angle, it is in practice sufficiently peaked at a
favourable piezoelectrically active direction
[19,21] to allow us to consider waves travelling
in this direction only. Therefore, the stationary
acoustic energy distribution is built up by for-
ward travelling (amplified) waves and backward
travelling (attenuated) waves, with the same
preferential off-axis angle 6.

It should be noticed that the ultimate acoustic
amplitudes near the cathode may largely exceed
the amplitudes of the original thermal waves,
because of net acoustic round-trip gain. McFee
[22] observed net acoustic round-trip gain during
the build-up of the acoustic flux in CdS. His
observations were in accordance with White’s

linear theory [1]. When the net round-trip gain is
reduced to unity due to some non-linear loss
mechanism a stationary state is reached.

We now introduce two types of potential
troughs: one type of trough is formed by forward
travelling acoustic waves, the second by back-
ward travelling waves. In ref. [18] it is shown that
the trough velocity is given by the group velocity
of the amplified (and attenuated) acoustic waves.
As a result of the elastic anisotropy and the
electro-acoustic dispersion (cf. section 7, ref.
[20]) the direction and magnitude of the group
velocity may differ markedly from the direction
and magnitude of the phase velocity.

To simplify the calculation we consider a sys-
tem of acoustic waves, which travel in a fixed
wave vector direction « only. Ultimately we are
only interested in the motion of the troughs
projected on the x; axis.

From White’s calculation [1] it appears that
piezoelectric stiffening has only a slight effect on
the phase velocity of acoustic waves. Therefore,
acoustic waves travelling in opposite directions
have approximately the same absolute phase
velocity. This conclusion also applies to the
group velocity. If the velocity of the potential
troughs associated with forward travelling
acoustic waves is denoted by v, the backward
travelling troughs in our system will thus travel
with —v,. For the theoretical description the
nature of v, is irrelevant; it can be either a phase
or a group velocity.

In the following analysis we use the sign con-
vention: V>0 while E <0 and I <0, where V' is
the applied voltage, E the electric field strength
and I the electric current.

Let n4 be the local, instantaneous density of
free electrons in the conduction band, and n,
and n,, the local, instantaneous density of elec-
trons trapped in potential troughs which travel
towards the anode and the cathode, respectively.
When the total local electron density in the
conduction band is denoted by n, we have

n=ngtng,+ng. (1)
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Gauss’s equation yields

2 —gn ), ©)

where D; is the ith component of the dielectric
displacement vector, x; the corresponding com-
ponent of the position vector and —q the elec-
tron charge. The time average of n is denoted by
ni and is assumed to be equal to the thermal
equilibrium density of free charge carriers. This
assumption, which implies that there is no space
charge in the stationary state, is supported by
potential probe measurements, which showed
that the electric field is uniform even in the
electro-acoustically active regime [8, 9]. It should
be noted that in eq. (2) we have to carry out a
summation over repeated subscripts (Einstein
convention); here i is a subscript running from 1
to 3. The equation for the total current density j
for our system becomes

Ji = —qnqvg, — qng vy, + qng, g,

ony , D,
i 0x,» + at ’ (3)

+gD
where D, are tensor elements describing the
anisotropic diffusion, ¢ is time, vy the drift velo-
city and *wv, the velocity of the potential troughs.
Here we have assumed that only the free carriers
can contribute to diffusion and that the diffusion
tensor elements are equal to their thermal equil-
ibrium values.

In addition, since j is solenoidal, we have,

i
6x,~

=0, )
the piezoelectric relations

T = ¢Sk — exiE , )

D; = e;E; + €S (6)

Newton’s second law:

3Tk (9214'
ik _ i 7
3xk p 8t2 ’ ( )
and

_1fou; Oy
Sx] 2<ax/ + axi) 5 (8)

where T; and S; are elements of the stress and
strain tensor, respectively, and cy, ej and g;
are the elastic, piezoelectric and dielectric tensor
elements, respectively. E is the electric field
strength vector, p the mass density and u the
spatial displacement vector.

If p, and b, are the creation and annihilation
rates per unit volume of forward travelling
troughs, respectively, the master equation for the
density of these troughs, n,, reads

ony, ony,
o P bhimvs ©)

Analogously, the master equation for the density
of backward travelling troughs, n,,, reads

ony, ony,

a D2~ b, + Vg; EC,— . (10)

In addition we make the approximation that
each forward travelling trough contains N; elec-
trons and each backward travelling trough N,
electrons, where N, and N, do not depend expl-
icitly on x. Then the densities of trapped elec-
trons become

nS] = Nlntl (1].)
and

nsZ = Nzntz . (12)
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3. The stationary state

If the electric field strength is applied along
the x; axis we have

OE, .
o 0 unless k =j=3. (13)
Because of the crystal symmetry it is reasonable
to assume that the static spatial displacement and
strain components, &; and .S_'i,», depend only on x;.
Then we obtain (cf. eq. (8))

5_’,-,-———0 unless i=3orj=3, (14)
and
98y _ 0 unless k = 3. (15)
axk

In the stationary state eq. (7) yields

E

=0. 16)

Q
=

With the help of egs. (5) and (16) we find

a5, oE,
Cijklﬁ—ekijgx'f= 0. (17)

Furthermore, in crystals with a hexagonal sym-
metry, such as those of CdS, we have ca3 =
ciux3=0, unless kK =3. With the help of egs.
(13)~(15), for i = 3 eq. (17) then becomes

3_12:_3 _Cum 385

3x3 €333 6x3 ) (18)
From egs. (2) and (6) we find

IE, d &
Eija_xf+eijk5;isjk=0. (19)

Since for hexagonal crystals es; = es3; = 0 unless

k = 3, from eq. (19) with the help of egs. (13}~
(15) we obtain

9B _es 9 ¢
3x3 B €133 GX3 S33 (20)
From egs. (18) and (20) we can conclude that
"_=—‘S33=0. (21)

Note that this result is a consequence of the
assumption of space-charge neutrality in the sta-
tionary state (cf. eq. (2)).

Eq. (21), among other things, means that we
are dealing with a uniform electric field strength
E;. Thence g, is also independent of xs, so

- = \ %4
V43 = —unEs= pa f > (22)

where u; are the free electron mobility tensor
elements and V is the voltage applied to the
sample.

Since the sample is assumed to be homo-
geneous, we can put

on
—=0. 23
o, (23)
In the stationary state the diffusion contribution
to the current density can be omitted. In view of
the translational symmetry along the x; and x,
axes we can write

ORs oR, oA,
ax;  Ox;  dx;

0 fori=12. 4)

Combining egs. (1}-(4), (23) and (24) yields

) on, oA,
(00, = vg)) 5= ~ (0 + ve) 5= 25

If we assume that the kinetics of the two types
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of troughs are statistically independent, it follows
that the only possible solution of eq. (25) is given
by

oy _ oy _ 0 6
ﬁx3 B 8x3 B X3 o ( )

The assumption of the statistical independence
of the two types of troughs is inspired by the idea
that the creation and annihilation of potential
troughs is solely determined by the random dis-
tribution of acoustic wave amplitudes and
phases. Note that for the derivation of eq. (26)
the assumption of space-charge neutrality in the
stationary state '(cf. eq. (2)) again plays an im-
portant role.

If we use eqs. (3), (4), (22), (23) and (26) we
find for the electric current in the stationary state
the following expression:

I= "(qA/-"33ﬁd/L)‘7 - qugs(ﬁsl - ﬁsz) p (27)

where A is the cross-sectional area of the crystal
(= the contact area). Expression (27) is also valid
when the field strength is below the threshold for
amplification, since in that case fig= A and A, =
i, = 0. It then follows that eq. (27) reduces to
Ohm’s law. (It should be noted that aq4, 7, A,
and v,, generally depend on V)

For amplification of an acoustic wave with
off-axis angle 8, the component of the drift velo-
city vy along the phase velocity v(8) should
exceed the phase velocity [4,21]. With eq. (22)
this condition for electro-acoustic amplification is
given by

V > 0(8)L/cos(8) w33 , (28)

where vy(8) = |vy(8)|. In the case of CdS [20,21],
or ZnO [20], the threshold voltage V. for the
amplification of sound waves is determined by
on-axis waves (8 = 0), according to

Ve=0v0)L/p33 . 29)

Eq. (29) holds for both longitudinal and trans-
verse piezoelectrically active sound waves, al-
though the electromechanical coupling factor for
the transverse on-axis waves happens to be zero.
For transverse waves, the off-axis angle of max-
imum amplification increases at increasing vol-
tage until it saturates at 30° (in CdS and ZnO).
This occurs because there is a maximum in the
electromechanical coupling factor at this angle
[4,21]. This implies that v,, occurring in eq. (27)
depends essentially on the applied voltage V. As
will be shown in section 7, electro-acoustic dis-
persion may cause vy, if v, is identified with the
group velocity, to become voltage dependent
even at a fixed off-axis angle.

Finally we find from the master equations (egs.
(9) and (10)), and from eqs. (11), (12) and (24),
that the stationary state values of the creation
and annihilation rates are equal:

pi= b (30)
and
p2=b,. 31

4. The current noise

In this section we present the calculation of
the spectral current noise intensity. To simplify
the calculation we assume that space-charge
neutrality prevails. This assumption seems valid
on a time-scale which is large compared to the
dielectric relaxation time. Furthermore, diffusion
and the displacement current are neglected. Due
to these assumptions the spectral current noise
intensity can be calculated without using the
piezoelectric relations (egs. (5) and (6)), New-
ton’s second law (eq. (7)) and eq. (8). This im-
plies that the elastic, dielectric and piezoelectric
anisotropy is not taken into account explicitly.
For a further discussion of the validity of these
assumptions we refer to the end of section 5.
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We recall that the basic equations presented in
section 2 hold for a system of waves travelling in
a fixed wave vector direction k. In general « is
characterized by an off-axis angle § and an azi-
muthal angle ¢. Because we neglect space
charge, diffusion and the displacement current,
the calculation can be simplified substantially by
averaging the fluctuating quantities a priori over
the azimuthal angle ¢. Thus the contribution of
all wave vectors lying on a cone, with half-cone
angle 8, centred around the ¢ axis is taken into
account. Furthermore, the fluctuating quantities
are averaged over the cross-sectional area. The
averaged quantities obtained in this way are in-
dicated by '. So when y(x;, x;, x3, ¢, 6,¢) is a
fluctuating local quantity, y'(xs, 6, t) is defined by

2w

y:%ff{%;fydq‘)}dxldxz. (32)

From this consideration it follows that y’ is in-
dependent of x;, x, and ¢. In the following we
shall rewrite our equations in terms of these
averaged quantities. Note that these quantities
are still local with respect to xs.

For small deviations 4 from the stationary
state we find that by linearizing eq. (3) and using
eq. (32), for i = 3,

4j3= —qnsdvg, — qa,Ang — qugAn{ + qugAng, .
(33)

Here we have neglected the ac-conductivity con-
tribution of trapped electrons. With the help of
eq. (1) space-charge neutrality yields

Aniy=—Anl,— An),. (34)

Because of the symmetry around the x; axis, we
can write

Avé3 =—pxndE;. (35)

From egs. (33), (34) and (35) we obtain

A]é = q(5d3 - Ug3)An;1 + Q(5d3 + Ug3)An;2
+ qussngddEs. (36)
For the fluctuations in the creation and anni-

hilation rates of forward travelling troughs, we
can write, in first-order approximation,

api-abi= s [ (pu-b)] AR
1 3 AE3=0
+L,— Ly, (37
where

o [9 ) ]
= [6ntl(pl by =0,

n,l
7, is the mean lifetime of the fluctuations in the
density of forward travelling troughs, and
L, = [4pi] and Lj = [Ab’l]Anl -0

4n,=0 AE}=0

AE3=0

are Langevin source functions, which formally
describe the spontaneous, random fluctuations in
the creation and annihilation rates, respectively.
Analogously, for backward travelling troughs we
can write

Aps— Aby= At [ 9 b AE;

pi-aby= ==+ [ 2>]AEB=0 :
+L,— L, (38)

where

o[ -]

T2 [ 49'1:2 (Pz 2) im0

and

L,= [Apﬁ]A,,tfo and L= [Ab5]4m2=0

AE3=0 AE3=0

In egs. (37) and (38) we have accounted for the
field dependence of the creation and annihilation
rates.
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Although the number of electrons per trough,
N, and N,, might be functions of the electric field
strength E, so that local fluctuations AE would
induce local fluctuations AN, and AN,, we
assume that the fluctuations AN; and AN, can be
neglected. This assumption is reasonable since
the sudden trapping and de-trapping of a whole
group (N;, N, > 1) of electrons is the main reason
for the occurrence of current fluctuations.
Thence egs. (11) and (12) yield

An{ = NiAn;, (39)
and
Anl,= NoAny,. (40)

From egs. (9), (37) and (39) we obtain

0 anty= A"“ +N AE}
ot Mo =7 1[ oE; .~ 1)]Azs3=0 ?
— Vg7 6 Ang + Ni(L,, — L) . 41)
Egs. (10), (38) and (40) yield
J , An52 ,
o7 Ans= - +Nz[ 3E; (p2— bz)] - AE3
a ’ ’ !
+Ug3 'a_x3 Al’ls2 + N2(LP2 - Lbz) . (42)

Making a Fourier analysis, from egs. (36), (41)
and (42) we obtain (Fourier transformed quan-
tities are denoted by tilde)

T qu({)dg - Ugg)

5= @+ iw) (Lp,—Li)
qN 2(003 + Dgs) Fr
1/ +iw) (&, n Li)

_ q(5d3 - vGJ) _d__ ﬁl
U +iw) edx;
q(ﬁds + US3) d

/7 +iw) Uss dx, fis

N R

qNQ(Ud3 + Ug3)
* 1/m+ iw) [ oE; P>~ 2)]AE3=0

+ q,uaaﬁd}éé . 43)

Before this first-order differential equation is
solved, it is advisable to choose suitable boun-
dary conditions. Mechanical boundary condi-
tions, such as zero stress at the boundaries cor-
responding to free end-surfaces, must be trans-
lated into boundary conditions for the electron
densities if they are to be useful in eq. (43). This
can be done by using the space-charge-neutrality
condition. From eq. (8) it follows that at all
positions (cf. eq. (12))

AS;=0 unless i=3orj=3. (44)

Considering free end-surfaces we put

AT}i(x3)=0 at x3=0and x3=L. (45)

For i = j = 3 it then follows from eq. (5) that

c31313483(x3) — esndEj(x;) =0
at x3=0and x3=L. (46)

Here we have used cax3 = ¢33 = 0 unless k =3,
and ex33 =0 unless k =3, in crystals with a hex-
agonal symmetry. From Gauss’s equation (eq.
(2)) we obtain in the case of space-charge neu-
trality

AD;3(0)=AD3(L).

fx— AD(xs)=0  or
} 47)

With eq. (6) it then follows that

£AE40) + €333455(0) = e3AE3(L) + e3:34S833(L) .
43)

Here, we have used &3 =0 unless k =3, and
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€33 = ez = 0 unless k = 3, in hexagonal crystals.
Combining egs. (46) and (48) we find

AE}(0)= AE4(L). (49)

This electrical boundary condition corresponds
to the mechanical boundary condition in eq. (45)
fori=j=3.

From eq. (4) we have

d .
7 Ai=0. (50)

By using egs. (36), (49) and (50) we find

(50, — ve)(Ans,(L) = Ang (0))
= — (D4, + 0g)(Ani(L) — Anl(0)) . (51)

Since we assumed that the two types of potential
troughs are statistically independent, it follows
that fluctuations An; cannot be affected by
fluctuations Ang,. Therefore, the only solution of
eq. (51) is given by

Ang (L) = Any(0), (52)
and
Ani(L) = Any,(0). (53)

In order to derive the ac short-circuited cur-
rent fluctuations, we put

oo fee

By integrating eq. (43) and using egs. (50) and
(52)-(54) we obtain the following solution for the
Fourier transformed current fluctuations:

(54)

F_ T QNl(t—Jda" l)ga)
L= A=t ia)L

L
x I J' (L~ L4) dx; dx, dxs
Ja

N + " i
" (1(1/27(':'?' la:;L) I J’I (Ly,— L}) dx; dx, dxs

(55)

where the averaging of the local source functions
over the azimuthal angle ¢ is denoted by ".

If the following assumptions are made:

(i) the fluctuations in L}, Ly, L} and Lj, are
uncorrelated;

(ii) there is a delta-function space correlation

"

for each Langevin source function (Lj, Ly, Ly,

L3,);

(iii) the noise in the source functions is shot
noise;
for the spectral cross-intensities of fluctuations in
(Lp,— L%,) [13] we obtain (using f = w/2)
S(L;I—LZ])(xa x*, f)
= 4b18(x1 — x1)8(x,— x3)8(x3 — x3) . (56)

We used p{ = b{= b;. Analogously, we find

S(L;Z—Lzz)(& x* f)
= 4526(x1—x’{‘)8(x2—x§)6(x3—x’3*) . (57)

From egs. (55)-(57) we obtain for the spectral
current noise intensity Sj:

~ _ 2 A
Sih)= 4b1N%q2(vd3 vzs) L '1+T—a1)’r1
73
+ 4b2N q (vd3 + vgs) I ‘l-‘m . (58)

When we use (cf. ref. [13])
1= Ay /Ty = A /NiTy, (59)

52 = ﬁsz/NZTZ > (60)
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and

.= Liv,,, 61)
7, being the transit time for the potential troughs,
the expression for the spectral current noise in-

tensity becomes

T/ T
1+ w27}

53— 2
Si(f) = 4qN1(qﬁs‘vg3A)(vdjv ”83)

g3

gy + vg3)2 72/ T
2,.2"
Vg, 1+ w T2

+4qNA(gri 0, A) (©)

From eq. (62) we see that the current noise
spectra contain two Lorentzian spectra with
different weighting factors and, generally,
different roll-off frequencies. It is concluded
that at voltages slightly above V., where &4, = v,,,
the noise is caused mainly by the second term,
which describes backward travelling troughs. At
increasing voltage, both Lorentzians may con-
tribute, depending on the relative magnitude of
the weighting factors. As a consequence of con-
sidering an ac-shorted circuit, the field depen-
dence of p;, by, p, and b, has no influence on the

S. The ac impedance

current noise (cf. egs. (43) and (54)). An im-
portant difference between these results and
earlier calculations [9, 13] is, that 7, and 7, are
allowed to be voltage dependent. It should be
noted that, as indicated in section 3, v, is voltage
dependent as well. Because of these additional
voltage dependences the magnitude of the cur-
rent noise is generally not proportional to (V —
V.)%; earlier calculations [9, 13] predicted that the
current noise is proportional to (V — V7. Note
that eq. (62) does not describe any potential
trough transit time effects.

The result of the spectral current noise in-
tensity, presented in eq. (62), suggests that the
calculation can be simplified by considering total
numbers of free and trapped electrons only (cf.
ref. [9]). However, we believe that the treatment
given in this section in terms of averaged local
quantities is preferable, because it allows us to
adjust the boundary conditions to changing
experimental conditions. Furthermore, the
influence of a spatial correlation in the spon-
taneous fluctuations in the creation and anni-
hilation rates can be investigated. A comparison
with experimental results is presented in ref.
[17].

In the calculation given in this section we extend Greebe’s impedance calculation of piezoelectric
plates [15] by including trough creation and annihilation processes. We extend our earlier calculation
[5,16] by assuming that two types of troughs exist and that. the trough velocity may differ from the
phase velocity of the acoustic waves.

In this section the effects of space charge, diffusion and the displacement current are taken into
account, because the ac impedance can be calculated without neglecting these effects. Thus, the elastic,
dielectric and piezoelectric anisotropies are taken into account with respect to the propagation direction
and polarization of the acoustic waves. Before calculating the ac impedance, it will be useful to examine
more closely the sound-wave-induced electric field strength wave [23-25].

Consider a sound wave which moves along a crystal direction . The sound-wave-induced electric
field strength wave is given by

Eini(x, 1) = Ejpgye'@ %0 (63)

where E;q, is an electric field amplitude, independent of x and ¢, w is the angular frequency of the
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sound wave, and

Note that k may be a complex vector, the real part of which (kg ) is the ordinary wave vector, whereas
the imaginary part (ki) describes the amplification of the sound wave. Maxwell’s equations yield

0 . ‘
VX (VX Eing) = —po* e+ 3¢ Jind> (65)

where u, is the vacuum permeability, u, the relative-permeability tensor and j;,q is the induced total
current density. If we assume that . is the unit tensor, we find the following expression from egs. (63)
and (65):

~k’Eingt k - (k * Eing) = — o i0jing » (66)
where
k?=(k - k).

If we assume that |ki/kge| <1, i.e. the amplification factor is close to unity over one wavelength, and
use w?/kke = v? with v, = |v,| the acoustic phase velocity, eq. (66) can be rewritten as

E.,—« (K : Eind) = Uf 1%)jincl . (67)

The left-hand side of eq. (67) is the transverse component of E;,4. To estimate the order of magnitude of
this component, we approximate ji,a by (o0Eind), Where oy is a typical conductivity for the samples under
study. Eq. (67) now becomes

'Emd |’;f::| Emd)l - vg_/? ) (68)
By inserting reasonable values for the unknowns on the right-hand side of eq. (68), it can be shown that
for all practical cases the magnitude of the transverse electric field component can be neglected with
respect to |Eid|. (For example, when we use v,=2X 10°ms™, po=126x10°*Hm™’, 0,<100 2 'm™'
and o > 10°s7, the right-hand side becomes smaller than 5x 1073.) Therefore, for the acoustic-wave-
induced electric field strength we may write, in good approximation,

Eia= Eipatc . (69)

For small deviations 4 from the stationary state we find from eq. (1) the following expression for the
electron densities:

An = Ang+ Any + An,, . (70)
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By linearizing the master equations (egs. (9) and (10)) we obtain (disregarding the Langevin source
functions, as we are only interested in the ac impedance)

—An ——'-(l"‘ —“‘p -b AE; — —An 71
Jat g T1 [aE, 1 1)]45,,:0 i Ve 3x,~ 4 ( )
and
—A4n, = — '2+ ——-1p -b AE; + v,, — An 72
ot 2 T [aE, 2 2)]45i=0 i 8i axi 2 ( )

The linearized equation for deviations in the total current density from the stationary state value
becomes (cf. eq. (3))

9

d
35 Anat 5 AD;. (73)

Aj,- = "qﬁdAUdi - qﬁdAnd = qUy; (Al’lsl - Ansz) + qD

In this equation the ac conductivity of the trapped electrons is neglected (cf. refs. [5, 16]).

Eqgs. (2), (4)-(8), (11), (12) and (70)—(73) form a set of 12 linear homogeneous differential equations
with 12 variables, AT, AS, AE, AD, Au, Aj, An, Any, Any,, An,, An,, and An,,, which can be solved by
looking for solutions of the type expl[i(wf—k - x)]. When k =0 we find a trivial solution. When the
polarization of the acoustic wave is denoted by the unit vector «, and when eq. (69) is used the
dispersion relation for k # 0, after some algebra, becomes (note that i when not used as a subscript is
the imaginary unity)

pw?=c'k?, 74
where

k=kie, c'=c[l1+KiD],

C = K{TCijkITK] the effective elastic constant,
K, = [e?/ec]'? the effective electromechanical coupling factor,
€ = K€ jx TiKy the effective piezoelectric constant (we used e = ey;
in hexagonal crystals),
£ = KigiK; the effective dielectric constant,
&= [1 N (q,uﬁd N ay(1+ ik?n/(ﬁdi — Ug)K;) N a(1+ ikD.,,/(ﬁdi + vgi)Kj))( i '1 _ )]—1
1/m1+ i(w — kivy,) 1/m+ i(w + kivg,) e(k’D, +i(w — kidg,))
M= Kby the effective mobility,
D, = kiDyK; the effective diffusion constant,
- d
ay = qu(Dd‘. - Ugi)K,‘ (— (pl - bl)) Kj,
JE; 4E;=0

_ d
a, = _qu(Udi + vg;)Ki (5E (po— bZ))A Kj.

=
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From eq. (74) we see that all electro-acoustic effects on wave propagation are described by an effective
elastic constant ¢'. The solution of eq. (74) can now be simplified if it is assumed that the coupling
between the acoustic waves and the electrons is small. (For instance, in CdS the maximum value of Kz,
which is in fact a measure for the ratio of the piezoelectric force and the elastic force, is approximately
0.05.) In other words, the electronic amplification will not change the acoustic wave amplitudes by more
than a few percent over one wavelength. In fact this has already been assumed earlier, to arrive at eq.
(69). Accordingly, we assume

|K2P|<1. (75)

Since the value of @ is still unknown, condition (75) should be verified for consistency. Experimental
results [5, 16] show that condition (75) is apparently satisfied. This small-coupling approximation implies
that ¢’ (and therefore k as well) contains only a relatively small imaginary part. If condition (75) holds,
eq. (74) becomes a quadratic equation in k with solutions given by (we used vy, = (c/p)?, the unstiffened
phase velocity [4])

k=k'~*>(1-3K®) (76)
)
and
k =k"=="(1-3K2"). a7
Vs
Putting k' = w/v, in the expression for @' and k” = —w/v, in the expression for @" (in fact this means

that the imaginary parts of k' and k” are neglected) and introducing the angular electron diffusion
frequency wp = v2/D,, we find

&= (y i i)[y B i{ w, 1 (al(l tia)m | a1+ ia)7, q,ur'zd)}]-l ’ (79)

a)D Ew

wp 1+ iw0'7'1 1+ ion,Tg
where
a = w Us a w Vs
1= 7 7= N 2T T A LN
wp (Udl« - vg,-)Ki wp (vd,- + vg,-)’(i ’

6'=1- vyk/v, and 0" =1+ vgx/v,=2— 6" are factors related to the electro-acoustic dispersion (cf.
section 7). Furthermore, we used the drift parameter [21]

Y =1- Daxilvs . (79)

For &” we obtain

&= <2_ - ifg)[z_ Y —i{£—+ 1 (ou(l - ia1)7'1+ a(1— ia2)7'2+ quﬁd>}]_l i (80)

wp ew \ 1+iwb"T 1+iwf'm

where a; and a, are defined after eq. (78).
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Once we have found the dispersion relations (eqs. (76) and (77)) the solution of our basic equations
for any variable Ay(x, t), be it a tensor, vector or scalar quantity, at a given angular frequency can be
written as a linear combination of plane waves with wave numbers k =0 representing a solution
uniform over space, k = k'x representing a plane wave travelling along «, and k = k"k representing a
plane wave travelling in the opposite direction. So in general we have
Ay (x, t) = Ay, eior 4 Ay’ eilwr—k'x) Ay” gilwr—k"-x) , (81)
where Ay,, Ay’ and Ay" are independent of x and ¢.
We now return to our basic equations to derive some useful relations between the plane-wave
amplitudes of our variables for each mode separately. For k = 0 it follows from eq. (8) that
(4Sp); =0. 82)
From eqgs. (6), (69) and (82) it follows that
k:(ADy); = eAE, . (83)
Here we used eq. (69):
(AEO),' = AE()K,' . (84)
From egs. (5), (82) and (84) we find
7T,'Kj(A TO)ij = —eAEo . (85)
From eqs. (11), (12), (70)-(73), (83) and the definitions in eq. (74) it follows that for i = 3,

a7y ATy
1+iwr;, 1+ion

(Aj0)3 = (q/.L 33ﬁd + + i(()E33)AEOK3 . (86)

Here we also made use of the fact that the off-diagonal elements of the mobility and the dielectric
tensor are zero.
For k = k' we find from eqgs. (5), (7), (8) and (74) that

e

ik (AT"); = — PR AE’, 87)
and from eq. (4),
@j)=0. (88)

Analogously, for k = k" we obtain

mw,(AT"); = —E%AE", (89)
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and
4" =0. (90)

The choice of boundary conditions allows us to determine the relative magnitude of the three modes
occurring in eq. (81). For two free end-surfaces we take the boundary conditions to be

T [(ATo)y + (AT e =+ (AT"); e %] e = 0; (C2)

at the cathode, x; = 0, and at the anode, x;= L.

So far, the results obtained only describe the behaviour of acoustic waves with a fixed wave-vector
direction k. If we realize that the results should be averaged over the azimuthal angle &, it follows that
the only important components of the electric field strength and the current density are along the x;
axis.

By integrating the x; component of the electric field strength along the direction of the trough
velocity, for the alternating voltage with angular frequency w, developed between the contacts, we find

L
AV =— f [AEy+ AE e ™"+ AE" e 7" "] €'k dxs , ©2)
0

where r is a position vector along the direction of the trough velocity. The magnitude of the phase
factor (k' - r) at the anode (x; = L) is found to be (we use g = r/r, a unit vector along r)

k’-r=k’m-g=k’Lﬁg§£. (93)
3

Thus it is convenient to introduce L. by defining

Ly=L "g’ £ (94)

3

From eq. (91) with the help of eqgs. (85), (87) and (89) we obtain

AE - K|S ]
= Ke®'| =t — o=t [AE0 (%95)
and
" 2 " e_ik'Le“ _ 1 6
AE" = Ked) ;k—]_‘e"—_'em AEO (9 )

With the help of egs. (92), (95) and (96) AV can be expressed in AE,. By integrating the x; component
of the current density over the cross-sectional area we find, using egs. (86), (88) and (90), that the total
current Al is given by

a7 A7)
1+ iw’rl 1+ i(x)TZ

Al = A(q,LL33ﬁd + + ia)833)AE0K3 ei“” . (97)
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The ac small-signal impedance at angular frequency w can be calculated with
Z(w)=—-AV/AI. (98)

We finally obtain

_ _ Ty T, . -1
Z(a)) = L[A (qpb33nd + 1+ inl + 1+ inz + 1&)833)]

—ik'Leg __ —ik"Leg
x {1+ ikiwedr - k) ST

Leﬁk Ik Il(e—ik "Legt e—ik”Lm) (99)

Substituting reasonable values for the unknowns in eq. (99), we find that the term containing K2
contributes significantly only at frequencies given by

f=f=@+ /2Ly 1=0,1,2,3,.... (100)

This is easily seen by putting k'~ w/v, and k" = —w/v; in eq. (99). 1t then follows that

- . -1 S ’ ” Le
Z(w)zL[A<q/.L33nd+1 ML, _taT +1ws33)] {1—K3w—2—(¢ +¢)tg(“;—l:)}. (101)

iwr;, 1+iwT, eff

Considering that v/wL <1 in all practical cases, and that condition (75) holds, it follows that |Z(w)|
will show narrow maxima at frequencies given by eq. (100). In section 7 it will be shown that L/v; is
equal to the trough transit time.

We recall that the ac impedance was calculated with the help of plane waves with wave vectors lying
on a cone with half-cone angle 8. In practice, however, it is known that waves with different off-axis
angies are involved in the sound amplification process [26]. This distribution of off-axis angles causes the
narrow resonances predicted by eq. (100) to be smoothed out somewhat. This smoothing out will occur
because a distribution of off-axis angles corresponds to a distribution of trough velocities, and thus to a
distribution of trough transit times (cf. refs. [5, 16]).

In section 4 the current noise was calculated. In this calculation the effect of space charge was
neglected among other things. As was pointed out in section 4 this neglect removes the piezoelectric
coupling of acoustic waves and electric fields. When we put K2=0 in the expression for the ac
impedance (eq. (99) or (101)), Z(w) remains unchanged except for frequencies close to the resonance
frequencies given by eq. (100): in fact, the transit time resonances disappear. Therefore it is concluded
that the absence of transit time resonances in the expression for the current noise (eq. (62)) may be due
to the fact that space-charge neutrality was assumed. Apparently, the condition that only frequencies
small compared to the dielectric relaxation frequency are considered is not sufficient to allow the
assumption of space-charge neutrality. Yet, we assume that the current noise, apart from transit time
effects, can be described by eq. (62).

A further discussion about the resonance frequencies given by eq. (100) will be presented in section
7. Apart from these resonances, the behaviour of Z(w), as given by eq. (99), is of interest in three
limiting cases for our ac-impedance measurements:

(i) Z(w)- L/IA(gunfia+ armi+ a,m) for w >0; (102)
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.. . s _ 17Ty QLT _1_

(i) Z(w)- LliwAes; for w > (q,u,33nd + T+iom + 1+ inz)(£33) (103)
which corresponds to the ac impedance of a device with capacity C = £;,A/L;

(i) Z(w)=L/Aqusfi (104)

at intermediate frequencies, where

Ty QLT
1+tiwn 1+iwn

+iwes| <guxfg .

Furthermore, at low frequencies we generally have two roll-offs, determined by the relaxation times
71 and 7,; at intermediate frequencies we expect a plateau, which is determined by free carriers only
(this is a consequence of the assumption that the ac conductivity of trapped electrons can be neglected);
at high frequencies we find the familiar dielectric roll-off. Measurements of the ac impedance of CdS
single crystals will be discussed in ref. [18].

6. The attenuation coefficients

From the calculation of the ac impedance presented in section 5 one can obtain some additional
interesting results. The imaginary parts of the wave numbers k' and k” (cf. egs. (76) and (77)) yield the
attenuation coefficients a, of waves travelling along k, and «. of waves travelling in the opposite
direction, respectively. (Note that amplification occurs when the attenuation coefficient is negative.) It
turns out that

al(w) = ~Im(k') = 3K ¥ e,
_ a1+ aj0r0) | am(l+ azwfzf)”)}
% [7{‘”““‘ HE TP 1+ w7367
W {al’fx(al — w1,0") + a,7y(a— w720")}]
wpl 1+ 37207 1+ w?r30™

X [{’)’ + i [alTl(al - (1)7'10') + a27'2(az - a)TzO")]}z

) 1+ w367 1+ w?r36™

a1+ awni0") | el + a2m2e")]}2]—1 , (105)

w 1 _
+{wD + ) [q#nd + 1+ w?r20” 1+ w?r30™
where

_® v
M= op By — vk (106)
and

® Vs

ay=— -~ .
2 wp (Ddi + Ug‘.)K;

(107)
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Analogously, we find

at=1Im(k") = 3K ev,,

a;7(1 — a,wr,0") + a,m(1 — azw'rzO’)}

X [(2— 'Y){CI/-”_ld + 1+ w7207

wp 1+ w?r30" 1+ w?r367

L@ {alfl(a1+ wT0") | apmy(a;+ wr,0')

1+ w?7307

« [{2 —y - i [(117'1(01 + w'TlB”) + asz(az + (1)7'20’)]}

£w 1+ w?r36™

1+ 0?7360

a171(1 - a1w7'10") (1272(1 - azw'Tzel)

w 1
+ —_ + J— n +
{wD Ew [q‘ Nq 1+ w?7367

27-1
108
g ] s

Due to the complexity of expressions (105) and (108) no simple predictions about the voltage and
frequency dependence of the attenuation coefficients can be given without detailed knowledge of the
various, generally voltage-dependent parameters. We confine ourselves to some general remarks.

The magnitude of the attenuation coefficients appears to be very sensitive to the magnitude of the
dispersion factors 6" and 8" (cf. eq. (78)). In the following section it will be shown that both 8’ and 6” are
essentially frequency dependent as a consequence of electro-acoustic frequency dispersion.

It should be noted that these expressions reduce to White’s much simpler results for the linear
attenuation coefficients [1], if we put a;7; = 0, a,7, = 0 and replace (quiis) by the conductivity (qu).

7. Dispersion effects

In this section we present the calculation of
the group velocity v, of an acoustic wave packet,
resulting from a collection of plane acoustic
waves with wave vectors close to k = ki (k is
real). The group velocity of this wave packet is
then found with

vy = Viw (k). (109)
When we use

w(k)=k - v,= kv,, (110)
eq. (109) becomes

v, = Vi (ko). (111)

Because of rotational symmetry around the ¢
axis, using the off-axis angle 8§, we can rewrite eq.

(111) as

v, v,
v, = (Us"'k“é‘k“)l‘ +5‘8—K5, (112)

where x; is a unit vector perpendicular to k,
lying in the plane of k and the x; axis, defined by

KX(KXX%)

fes = PEICEED N (113)

where x3, is a unit vector along the x; axis (c
axis).

In general the phase velocity o, will be a
function of k and §. In fact, because v, is deter-
mined by the real part of the elastic constant,
with the help of the definitions in eq. (74) we find

v, = vy [1+3K2Re(D)] . (114)

We recall that v, is the unstiffened phase velo-
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city given by vy, = (kimic jumeki/p)”?. By substitut-
ing eq. (114) into eq. (112) we obtain:

O L e e
vg—vs{ Zﬂ:ﬁ(—vso 255, e%( e( ))}K

S o1l K2Re(d
vs{—{go%vso E“l'):aa( e e( ))}Kg.

(115)

The various terms in this equation can be
identified as follows:

k o .
oo 7k UsoK elastic frequency
% dispersion ,
1 vy d .
5 k > K2 7 (Re(®P))k  electro-acoustic
* frequency dispersion
1 9 .
o 35 Vs elastic angular
% dispersion ,
1o, 0 .
3. 95 (K2 Re(D))xs electro-acoustic

angular dispersion .

The elastic frequency dispersion can be neglec-
ted, since in the continuum approximation (usu-
ally valid for elastic waves with frequencies
below 10% or 10° GHz) v,, is independent of k
[27].

The elastic angular dispersion can be cal-
culated if the elastic constants are known. For
instance, for CdS [26] one finds that the elastic
angular dispersion for transverse waves (T,
mode) has a maximum at & = 20°. In that case
the angle between the direction of the group
velocity and the ¢ axis is 38°. For longitudinal
waves the elastic angular dispersion is somewhat
less pronounced.

It is much more complicated to calculate the
electro-acoustic dispersion effects. The reason is
that the funcrion @ defined in eq. (74), which is
needed for the calculation of v, contains wv,.
Therefore, it will be necessary to use numerical
methods to find v,. Keller [26] estimated, under
some limiting conditions, the magnitude of the

electro-acoustic  dispersion using the linear
theory of White [1]. It was shown that electro-
acoustic angular dispersion depends strongly on
the acoustic frequency. The electro-acoustic
frequency dispersion generally depends on the
acoustic frequency, and on the direction and is of
the order of K2.

Important quantities appearing in the attenu-
ation coeflicients (cf. section 6) are the dispersion
factors 6’ and 6", defined in eq. (78). From eqgs.
(78) and (115) it is found that

i Yo O p :
0' = —= Kik — (Re(d)), 0"=2-6"). (116)

2 dk
To find 6’ (and 6”), eq. (116) should be solved
(note that the function @ contains 6’ and 6"; cf.
eq. (78)). Additional complications in the evalu-
ation of 9’ and 0" are the frequency and direc-
tional dependence of these quantities, as can be
seen from eq. (116).

When we use Keller’s estimate [26] of the
electro-acoustic frequency dispersion, it is found
that

|0|=K24; 0"=2. (117)

It can be shown that the magnitude of the attenua-
tion coefficients (cf. section 6) is strongly depen-
dent on |@'], even if |§] < K%/4.

Finally, we discuss the resonance frequencies
predicted in the ac impedance, which are given
by eq. (100). If we use egs. (94), (100) and (115),
and neglect the elastic and electro-acoustic
frequency dispersion in the phase velocity, for
the resonance frequencies we find

B gy 2l+1) o
fl—(21+1)2L— 5 T
1=0,1,2,3,..., (118)

with 7, the trough transit time as defined in eq.
(61).

As will be discussed in ref. [18], the effect of
electro-acoustic dispersion may influence the
magnitude of the trough transit velocity vg,.
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