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Abstract
This paper represents our newly developed software for emotion recognition from facial expres-
sions. Besides allowing emotion recognition from image files and recorded video files, it uses
webcam data to provide real-time, continuous, and unobtrusive facial emotional expressions. It
uses FURIA algorithm for unordered fuzzy rule induction to offer timely and appropriate
feedback based on learners’ facial expressions. The main objective of this study was first to
validate the use of webcam data for a real-time and accurate analysis of facial expressions in e-
learning environments. Second, transform these facial expressions to detected emotional states
using the FURIA algorithm. We measured the performance of the software with ten participants,
provided them with the same computer-based tasks, requested them a hundred times to mimic
specific facial expressions, and recorded all sessions on video.We used the recorded video files to
feed our newly developed software. We then used two experts’ opinions to annotate and rate
participants’ recorded behaviours and to validate the software’s results. The software provides
accurate and reliable results with the overall accuracy of 83.2%, which is comparable to the
recognition by humans. This study will help to increase the quality of e-learning.

Keywords Emotion recognition . Affective computing . Software development . Statistical data
analysis . Fuzzy logic .Webcam, E-learning

1 Introduction

1.1 Emotion and e-learning

Emotions are a significant influential factor in the process of learning [58]. Current instruc-
tional methods for online learning increasingly address emotional dimensions by
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accommodating challenges, excitement, ownership, and responsibility among other things in
the learning environment [25, 80]. Educational games [18] would be the case in point: offering
a challenging and dynamic learning setting that effortlessly combines emotion and cognition
[78]. While online learning has expanded radically over the past years, there is a renewed
interest in adaptive methods and personalization that adjust the instruction and support
explicitly to the learners’ mental states and requirements. Such personalization is conven-
tionally based on producing and maintaining a model of the learner, which is mainly based
on individual characteristics and validated performances [13, 14]. Emotion has systemat-
ically been ignored as a learner model variable because it was hard, if not impossible to
detect. Now that technology is about to be capable of automatically recognising the
learners’ emotional states, learner models could readily include emotions and thereby
improve the quality of personalization.

Emotion recognition in e-learning environments could, while obviously taking into account
issues of ethics and privacy, propose a valuable source for improving the quality of learning
[11]. Responses based on emotional states [35] could enhance learners’ understanding of their
own performance [10].

Also, educational game development [79] can take advantage of emotional data of learners
[4] to optimise experiences and the flow of events. In this study, we offer an accurate and
reliable technology for emotion recognition that can be easily applied in digital educational
games and other e-learning environments.

1.2 Approaches to emotion recognition

Technologies related to emotion recognition date back to the early 1900s. Different tests of
blood pressure were used for lie recognition during the questioning of criminal suspects at
that time [53]. Although occasionally lie detectors are admitted as evidence in court,
however, they are generally considered unreliable. Over the years, there have been several
improvements in the accuracy of emotion recognition software. Bettadapura [12] reports
accuracies for existing emotion recognition solutions ranging from 55% to 98% since
2001. Basically, six different approaches to emotion recognition are available, ranging
from 1) using facial expressions [7], 2) speech and vocal intonations [8], 3) physiological
signals [65], 4) body gesture and pose [59], 5) text [66], and 6) a combination of the two or
more of these approaches [9, 60, 64].

Facial expressions provide the most informative data for computer awareness of emotions
[64]. However, software applications that use facial expressions have a number of restrictions
that mostly limit their accuracy and applicability. Usually, they can only manage a small set of
expressions from a frontal view of faces without facial hair and glasses, and they require good
and stable lighting conditions. Also, most software applications cannot be used in real-time,
but require extensive post-processing for the analysis of videos and images [57].

Emotion recognition can also be provided based on the audio and vocal intonations in
recorded speech [19]. However, the analysis of vocal intonations produces less accurate
emotion recognition results than facial expressions approaches. Vocal intonation analysis can
only manage a subset of basic emotions from the recorded audio files or from the speech
streams that come from microphones. These require post-processing through various speech
analysis methods [75].

Physiological sensors allow for capturing a variety of physiological responses such as body
temperature, heart rate, blood volume, and skin conductance of an individual [42]. These
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sensors are sometimes offered in the form of wearable devices [69]. They sometimes are used
to study experienced emotions of learners in schools [3], and as an add-on to intelligent
tutoring systems [31]. Although such technologies show promising results in emotion recog-
nition, it is scarcely applied, because it is obtrusive to learners and requires expensive and
dedicated equipment [46].

Body movements and gestures are an additional source of emotion recognition [40, 76].
D’Mello and Graesser report that there are significant relationships between emotion and
body movements. The combination of posture and conversational dialogue systems
reveals a modest amount of redundancy among them [17]. Kyriakos and colleagues
developed a real-time dynamic hand gesture and posture recognition system for the
formation of a visual dictionary by merging hand postures and dynamic gestures [43].
Recently, the video games industry has introduced sensory devices as a commodity,
mainly meant for interaction control in entertainment games [61]. Already in 2005,
Nintendo introduced its Wii game console, with a movement and gesture recognition
sensor. Likewise, Microsoft introduced in 2010 its Kinect to provide optical sensor
technology for body recognition and motion tracking [84]. Although both Wii and Kinect
have greatly enhanced gaming interaction modes by supporting capturing gestures and
bodily movements, they are not capable of extracting the users’ emotions [68]. Emotion
recognition through text or speech analysis is applied to a set of words in a specific
language [48]. Such analysis is called sentiment analysis and uses natural language
processing techniques for extracting the affective state represented in the text and thereby
the affective state and attitude of the author of a text [81]. Dependency on a specific
language is the main obstacle in developing a worldwide software application for recog-
nizing emotions from the text [48]. Another obstacle is where the speakers or authors do
not necessarily express their own emotions, but describe somebody else’s emotion [51] or
sometimes they do not express the emotion in a sentence explicitly [16]. Some studies
reported that these issues could be solved using semantic technologies (see for example
[16]). Such technology adds some metadata over the textual data and encodes the meaning
of the text [5, 6].

The accuracy of emotion recognition can be greatly improved by combining two or more of
the previous approaches. Jaimes and Sebe [34] have shown improved performance by
combining visual and audio information. They showed that the multimodal data fusion could
rise to accuracy levels from 72% up to 85% if the following conditions are met: 1) clean audio-
visual input, such as noise free dataset, closed and fixed microphone, and non-occluded
portraits, 2) with actors’ performances, 3) who speak single words, and 4) who display
exaggerated facial expressions of the six basic emotions (happiness, sadness, surprise, fear,
disgust, and anger) (cf. [20]).

1.3 Emotion recognition in e-learning

Notwithstanding the limitations of emotion recognition described above, topical hardware
developments on regular computer equipment [23] would now enable emotion recognition at a
larger scale [7]. A typical example would be the use of common webcams for emotion
recognition from facial expressions [7, 52]. It has been suggested that e-learning applications
can benefit from such emotion recognition devices for more natural interactions [71] because
they collect data of learners continuously and unobtrusively [7, 8]. For a long time approaches
for collecting emotional data of learners have been either obtrusive or discontinuous [67]. For
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example, physiological sensors and questionnaires can fundamentally hinder the learning
process [24] and they are not convenient or appropriate to use in e-learning environments
[63]. Using webcam-based approaches to emotion recognition would overcome these prob-
lems. Various problems have been reported though. Emotion recognition from facial expres-
sions could not be detected in real-time from the frontal view of faces [82]. Intensive post-
processing is often needed to analyse recorded video files or stored image files of learners [38].
Occasional solutions for real-time recognition of facial emotions produced low accuracies that
are not comparable to emotion recognition by humans [7]. It has been difficult to accurately
detect faces and facial emotions when beard, glasses, hair over face, wounds, or other objects
cover any parts of the face [47]. Moreover, recognition is hampered when disturbing light
shines directly into the face of the learner.

1.4 Several techniques for classification of facial emotion recognition

Researchers have proposed many methods for recognising and classifying emotions from
facial expressions. Prior studies show that there are many different techniques to distinguish
facial expressions. However, we only report eight of the most notable methods in this study: 1)
pixel-based recognition [77], 2) local binary pattern [50], 3) wavelet transform [36], 4) discrete
cosine transform [37], 5) Gabor filter [56], 6) edge and skin detection [32], 7) facial contour
[26], and 8) fuzzy logic model [22]. Each of these studies has shown that the facial emotion
recognition can accomplish an average level of success, but the performance is less than
human judgement. These studies have shown that the accuracy of automatic facial emotion
recognition classifications remains challenging because of the inconstancy, complexity, hard to
implement, and inappropriate tracking of facial features in real-time or recorded video streams.
As a result, we introduce a new approach using fuzzy logic rules to generate better, faster, more
accurate, and more reliable results.

Recent studies have shown that researchers can recognise and classify the facial
emotional expressions more appropriately. For example, Ali and her colleagues [1] have
proposed an application of nonlinear and non-stationary data analysis techniques named,
Empirical Mode Decomposition (EMD) that can classify the facial emotions with better
accuracy compared to the stated methods. They have used static images as input to their
application and have extracted facial features accordingly. They have applied ANOVA test
as the statistical data analysis technique to obtain the facial features that were statistically
significant. Then they have sent the facial features into the algorithms such as K-NN and
SVM for classification of seven categories of facial emotions. In another study, Gunes and
Pantic [27] have considered Russell’s method for circular configuration called Circumflex
of Affect [62]. In this method, every primary emotion illustrates a bipolar entity as an
element of the similarly emotional continuum. The suggested polar are valence (pleasant
versus unpleasant), and arousal (relaxed versus aroused). The recommended emotional
space comprises four quadrants: high arousal positive, low arousal positive, high arousal
negative, and low arousal negative. Consequently, it is likely to represent every emotion
by its valence and arousal. Moreover, they have investigated automatic, dimensional, and
continuous emotion recognition using visual, audio, physical, and brainwave methods on
their study. Their findings revealed that representing emotions continuously is not a small
problem to ignore and to handle easily. In another study, Anisetti and his colleagues [2]
proposed a semi-supervised fuzzy facial emotional classification system based on
Russell’s circumplex model. Their proposed system works only on face related features
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classified with the Facial Action Coding System (FACS). They have extracted facial
emotional expressions from streaming videos. To evaluate the quality of their system,
they have used the Cohn-Kanade database and the MMI Database to apply Russell’s space
mapping. To make Russell’s axes classification, they have created an emotional inference
space and have mapped action units to axes values. Then, they have exploited some well-
defined rules from this mapping. Although they proposed this novel system, however, the
system requires expert tuning to guarantee context awareness. They have concluded that
researchers should further investigate on tuning the system to obtain better outputs for
facial emotional classification in the complex scenarios.

1.5 Starting point

In this paper, we present a new methodology of webcam-based emotion recognition, along
with a full technical implementation that was used for its validation. The approach is based
on fuzzy logic, using unordered fuzzy rule induction (FURIA algorithm; [29]). Compared
to the statistically data analysis approach proposed by Ali and her colleagues [1], our fuzzy
logic approach uses the supervised machine learning method to provide more favourable
output because fuzzy logic rules can be easily generated from a dataset of recorded
emotions, while alternative machine learning approaches, such as neural networks, Bayes-
ian networks, and decision trees would require extensive implementation. Moreover, our
approach can use single image files, recorded video files, and live webcam streams to
propose an accurate recognition of facial expressions compared to the approach suggested
by Ali and her colleagues that can only use single image files [1]. We follow the emotion
classification approach of Ekman and Friesen [20], which has been frequently used over
the past decades for classifying the six basic emotions: happiness, sadness, surprise, fear,
disgust, and anger.

We do not follow Russell’s method for Circumflex of Affect used by Gunes and Pantic
[27]. Therefore we do not calculate bipolar entities such as high arousal positive, low
arousal positive, high arousal negative, and low arousal negative in our approach. Instead,
we use extracted facial features by tracking a human face in real-time and classify facial
emotions. Moreover, compared to the semi-supervised fuzzy facial emotional classifica-
tion system based on Russell’s circumplex model proposed by Anisetti and his colleagues
[2], we recommend a new approach that can classify emotions based on the FURIA fuzzy
rules using the supervised machine learning technique. Our rules do not need to be
produced based on the emotional inference space and mapped action units to axes values.
Instead, we generate our rules based on the cosine values of the most significant triangles
created based on the most significant facial feature points. We will describe our approach
in the coming sections.

Although similar to our previous approach [7], which used Principal Component
Analysis, the fuzzy logic-based approach produces better, more accurate, and more
reliable results. To allow maximal portability the software is implemented as a RAGE-
compliant software component [73, 74]: the RAGE software architecture omits dependen-
cies on platforms and operating systems and accommodates the easy reuse and integration
of software in a variety of video game engines. In the rest of this paper, we first describe
creating a facial emotion database and the functionalities of our software. Thereafter, we
explain the validation method used in this study, discuss the results of this study, and
provide suggestions for future work, respectively.
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2 Database, fuzzy rules, and software

2.1 Creating a database of the facial emotions

We started from an existing database, the Cohn-Kanade AU-coded expression extended
database (CK+) as the reference to this study [49]. This database is used for automatic facial
image analysis and includes an annotated set of human’s facial images, including validated
emotion labels for each image. Based on this, we then created a database of emotions including
the rotated images of each subject. We then created cosine values of facial landmarks for
training and testing purposes. This database then was used to deduce fuzzy rules. To this end, we
developed a small software application that used DLIB [39], which is a widely used C++ toolkit
includingmachine learning tools and algorithms. After loading images and their related emotion
labels from the CK+ database, face recognition and face tracking functionalities from DLIB
were used and extended to develop facial emotion classification functionality. From each image,
we extracted 68 facial landmarks and made 54 vertices for 18 relevant triangles using every
three important landmarks in our database. For example, two important triangles with 6 vertices
are the triangles between eyebrows and eyes (see Fig. 1, facial landmarks 17, 36, and 39 & 22,
42, and 45).We then calculated the cosine values (54 values) of all vertices in all triangles. Next,
we stored all the cosine values along with the related emotion labels of each image of the CK+
database in our database in the form of aWEKA attribute-relation file format (arff) [70].WEKA
is a tool that provides a number of machine learning algorithms for data mining tasks. The arff
file is a textual database that defines a list of instances sharing a set of attributes: each instance is
represented with 55 attributes called Cosine0, Cosine1,…, Cosine53 and Emotion, respectively.
By loading the database in WEKA 37 so-called FURIA fuzzy rules (see appendix 1) could be
generated, allowing us to automatically detect and classify emotions from facial expressions.
FURIA is a fuzzy rule-based classification method, which offers simple and comprehensible
rule sets [29]. WEKA does not provide the FURIA rule-based classifier algorithm as default;
therefore users must add this classifier algorithm to the existing classifiers. Users can use the
package manager of the WEKA tool in the WEKA GUI Chooser to install FURIA before they
run the WEKA Explorer application. When users added the FURIA classifier to the list of the
WEKA classifiers, they can run the FURIA classifier and produce the FURIA fuzzy rules. The
mechanism of fuzzy rules is briefly explained in the next section.

Fig. 1 A detected face, facial landmarks, the vertices, and the relevant triangles of the face
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2.2 Fuzzy rules

A fuzzy rule is obtained by replacing binary logic intervals with fuzzy intervals. For example,
a binary interval would be represented as step or block function (with a discrete value of 1
(Btrue^) if the parameter under consideration is inside the interval, and 0 (Bfalse^) elsewhere).
A fuzzy rule, however, could be shaped as a trapezium, allowing for Bfuzzy^ truth-values
between 0 and 1 (Fig. 2). This can be formalised as follows: the trapezoidal membership
function for a fuzzy set F on the universe of discourse X is defined as μF:X ➔ [0,1], where
each element of X is mapped into a value between 0 and 1. This function is defined by four
parameters [29]: a lower limit LL, an upper limit UL, a lower support limit LSL, and an upper
support limit USL, where LL <UL< LSL <USL:

μF : X ¼
0; X <¼ LLð Þ or X > USLð Þ

X−LLð Þ= UL−LLð Þ;
1;
USL−Xð Þ= USL−LSLð Þ;

LL <¼ X <¼ UL
UL <¼ X <¼ LSL
LSL <¼ X <¼ USL

The four parameters of the trapezoidal member function are indicated on the horizontal axis in
Fig. 2.

We have generated 37 FURIA fuzzy rules in this study. Appendix 1 presents all the rules.
As an example, we explain one of our generated FURIA fuzzy rules (rule number 10) to show
how the emotion recognition logic is expressed. Fuzzy rule number 10 reads as follows:

B Cosine1 in −inf ;−inf ; 6:82602; 7:03498½ �ð Þ and Cosine15 in 14:5889; 15:0512; inf ; inf½ �ð Þ
¼> Emotions ¼ Sad CF ¼ 0:53ð Þ^:

The antecedence of the rule includes two trapezoidal conditions. The arguments between
brackets represent the 4 trapezoidal parameters. As inf indicates infinity, both trapeziums in
this example are degenerate. The overall rule can be interpreted as:

(1) Cosine1 in [−inf, −inf, 6.82602, 7.03498]: This expression is completely valid for
Cosine1 < = 6.82602, invalid for Cosine1 > 7.03498, and partially valid in-between

Fig. 2 Binary logic and the trapezoidal member function of a fuzzy interval
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(2) Cosine15 in [14.5889, 15.0512, inf, inf]: it is invalid for Cosine15 < 14.5889, completely
valid for Cosine15 > = 15.0512, and partially valid in-between.

(3) This rule means that if the aforementioned conditions are met, then the emotion will be
considered to be Bsad^.

2.3 Implementation of emotion recognition from facial expressions

The software was developed in accordance with the RAGE client asset architecture [73, 74],
which prohibits direct access to the operating system and hardware. As a result, the software
accepts raw image data that can originate from various sources such as pictures or screenshots and
frames from either pre-recorded video or live webcam streams making is very versatile in its
application. The process of emotion recognition starts with face recognition. This is done using
DLIB [39], which provides functionality for real-time tracking for not losing the face. It also
provides a sufficient set of 68 landmarks, which reflect the significant positions on the individual’s
face, which are dynamically updated. Once the 68 facial landmarks of a face are extracted, we
overlay 18 relevant triangles on the face. We then calculate 54 cosine values of all vertices of the
triangles. Next, the fuzzy rules come into play: all 54-cosine values are passed into the rules set to
extract and classify the expressed emotion. Figure 3 represents the software with 3 detected faces.

3 Validation method

The validation of the approach is arranged by asking test persons to express a series of
emotions and compare the judgements by the fuzzy logic approach with the judgements made
by experts. For this, we used the recorded video files of test persons from a previous study [7]
to feed into the fuzzy logic system. The whole procedure is described below.

Fig. 3 The software with 3 detected faces. Two faces are faces of real persons in real-time and the third face is a
drawing face of Michael Jackson printed on a T-Shirt
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3.1 Participants

We have sent an email out to employees from the Open University of the Netherlands to
recruit the participants for this study. The e-mail mentioned the estimated time investment
of 20 min for enrolling in the study. Activities entailed the active expression of a series of
facial emotions. No specific background knowledge was requested. Ten participants, all
employees from Open University of the Netherlands (8 male, 2 female; age M = 42, SD =
11) volunteered to participate in the study. Altogether, this small number of participants
was sufficient for generating a dataset of 1000 facial expressions. By signing an agreement
form, the participants allowed us to capture their facial expressions and to use their data
anonymously for future research. We assured the participants that their raw data would not
be available to the public, would not be used for commercial or similar purposes, and
would not be available to third parties. Participants were told that participation in the study
might help them to become more aware of their emotions while they were communicating
through a webcam with our software.

3.2 Tasks

Five consecutive tasks were given to the participants. Participants were asked to expose six
basic facial expressions as well as the neutral one. Totally, facial expressions were requested
one hundred times, uniformly distributed over the six emotions and the neutral emotion. Each
of tasks serves a different purpose. The first task was meant to calibrate the user’s facial
expressions. In the second task, participants were asked to mimic a pre-set emotion that was
presented in an image shown to them. There were 35 images presented subsequently through
PowerPoint slides; the participant scrolled through the slides. Each image illustrated a single
emotion. All six basic facial expressions and the neutral one were five times present with the
following order: happy, sad, surprise, fear, disgust, anger, neutral, happy, etcetera. In the third
task, participants were requested to mimic the seven facial expressions twice: first, through
slides that each presented the keyword of the requested emotion and second, through slides
that each presented the keyword and the picture of the requested emotion with the following
order: anger, disgust, fear, happy, neutral, sad, and surprise. The fourth task presented 14 slides
with the text transcript (both sender and receiver) taken from a good-news conversation. The
text transcript also included instructions what facial expression should accompany the current
text-slide. Here, participants were requested to read and speak aloud the sender text of the
‘slides’ from the transcript and show the accompanying facial expression. The fifth task with
30 slides was similar to task 4, but in this case, the text transcript was taken from a bad-news
conversation. The transcripts and instructions for tasks 4 and 5 were taken from an existing
Open University of the Netherlands (OUNL) training course [45] and a communication book
(Van der [72]).

3.3 Hardware and software

Participants performed individually on a single computer. The computer screen was separated
into two panes, left and right. The tasks and the PowerPoint file were presented in the right
pane, while the participants could read in the left pane how the software classified their facial
expressions. An integrated webcam and a 1080HD external camera were used to capture and
record the emotions of the participants as well as their interactions with mouse and keyboard
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on the computer screen. The integrated webcam was used to capture and recognise the
participants’ emotions, while the external cameras used screen-recording software (Silverback
version 2.0) to capture facial expressions of the participants and record the complete session.
Raters for validating our software used the recorded video.

3.4 Procedure

Each participant signed the agreement form before his or her session started. Participants
individually performed all five tasks in a single session of about 20 min. The session was
conducted in a silent room with good lighting condition. The moderator of the session
was present in the room but did not intervene. All sessions were conducted on two
consecutive days. The participants were requested not to talk to each other in between
sessions so that they could not influence each other. The moderator gave a short
instruction at the beginning of each task. For example, participants were asked to show
mild and not too intense expressions while mimicking the emotions. All tasks were
recorded and captured by our software. After the session, each participant filled out an
online questionnaire to gather participants’ opinions about their learning experience and
the setup of the study.

3.5 Validation

Two expert raters analysed the recorded video streams to provide a validation reference for the
software output. The raters, both associate professors at the psychology department of the
Open University of the Netherlands, were invited to individually rate the emotions of the
participants’ in the recorded video streams. Both raters are familiar and skilled with using the
Facial Action Coding System [20].

Firstly, they received an instruction package for doing individual ratings of participants’
emotions in one out of ten video recordings. Secondly, both raters participated in a training
session together with the main researcher where ratings of this first participant were
discussed to identify possible issues with the rating task and to improve common under-
standing of the rating categories. Thirdly, raters resumed their individual ratings of
participants’ emotions in the nine remaining video streams. Fourthly, they participated
in a negotiation session together with the main researcher where all ratings were discussed
to check whether negotiation about dissimilar ratings could lead to an agreement or to
sustained disagreement. Finally, the final ratings resulting from the negotiation session
were taken as input for the data analysis. The data of the training session were also
included in the final analysis. The raters received: 1) a laptop, 2) a user manual, 3) an
instruction guide on how to use ELAN, which is a professional tool for making complex
annotations on video and audio resources, and 4) an excel file with ten data sheets; each of
which represented the participant’s information.

4 Analysis of data and results

In this section, we will first describe how to calculate the total sample size for this study. We
then explain the results of the raters. Finally, we explain the agreement between requested
emotions and the recognised emotions by the software.
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4.1 The required sample size

We used G*Power tool [21], which is a tool to compute statistical power analyses for several
statistical tests. We then applied a Bt-test^ with Bcorrelation analysis of point biserial model^
and Ba priori^ to compute required sample size with given Balpha (significance level)^,
Bpower^, and Beffect size^ to realize the total sample size of this study. We used the following
input parameters: one tail, effect size = .11, alpha error probability = .05, and the [power (1 -
beta error probability)] = .95; so we used beta = 0.05, Type II. The total sample size required
for this study appeared to be 885 occurrences with the actual power of .95. We used 1000
occurrences for sampling the ‘requested emotions’, thus this criterion was met.

4.2 Results of the raters for recognising emotions

Hereafter, we describe how the raters detected participants’ emotions from their recorded video
streams. The disagreement between the raters, which was 34% before the negotiation session,
was reduced to 22% at the end of the negotiation session. In order to determine consistency
among raters, we performed the cross-tabulation between the raters and also inter-rater
reliability analysis using the Kappa (ϰ) statistic approach [44]. The ϰ value in statistics can
measure inter-rater agreement for qualitative items. We calculated and presented the ϰ value
for the original ratings before negotiation. We have 1000 displayed emotions (see Table 1)
rated by two raters as being one of the six basic emotions and the neutral emotion. The
cross-tabulation data are given in Table 1. Each recognised emotion by the rater 1 is
separated into two rows that intersect with the recognised emotions by the rater 2. The first
row indicates the number of occurrences of the recognised emotion and the second row
displays the percentage of agreement about the identified emotions. In addition to the ‘ϰ’
value, we also calculated overall agreement (‘α’) for each table. This ‘α’ value is the
average of each diagonal in the related tables, which is calculated based on the uniform
distribution of emotions. For instance the ‘α’ value in Table 1 is calculated as: α = (90.6 +
53.3 + 53.3 + 39.7 + 68.2 + 73.4 + 95.2)/7 = 67.7.

Cross-tabulation analysis between the raters indicates that the neutral expression has the
highest agreement (95.2%) and the fear expression has the lowest agreement between them
(39.7%) (Table 1). According to Murthy and Jadon [54], people have more difficulty in
recognising fear facial expression, which clarifies why the most confused expression is fear.
Sadness is the next confused category, which is often recognised as neutral (26.7%). Analysis
of the ϰ statistic underlines the high degree of agreement among the raters. The inter-rater
reliability was calculated to be ϰ = .715 (p < 0.001), which qualifies as a substantial agreement
among raters according to the interpretation of ϰ values by Landis & Koch [44].

4.3 Emotion recognition by the software

Table 2 shows the requested emotions of participants contrasted with software recognition
results. These numbers are taken from all 1000 emotions (10 test persons displaying 100
emotions each) including the cases that one or more of the raters judged that the test person
was unable to mimic the requested emotion correctly. Each requested emotion is separated into
two rows that intersect with the recognised emotions by the software. Our software has the
highest recognition rate for the happy expression (93.3%) and the lowest recognition rate for
the fear expression (43.8%) (See Table 2).
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Please note that the obtained differences between software and requested emotions are not
necessarily software faults but could also indicate that participants were sometimes unable to
mimic the requested emotions (30.6%). The software had in particular problems to distinguish
sad from neutral, fear from neutral, anger, disgust, and surprise, disgust from anger and neutral,
anger from disgust and sad. Error rates of the software are typically between 0.8% and 31.1%.

The numbers in Table 2 show that all six basic emotions and the neutral one have different
distributions for being confused as to the other emotions. In other words, they have different
discrimination rates. Apart from neutral, the emotions that are best discriminated from other ones
are happiness, surprise, and anger. Happiness has the highest accuracy rate of 93.3% and is not
confused with fear and anger at all; surprise has the next highest accuracy rate of 86.3% and is not

Table 1 Rater1 * Rater2 Cross-tabulation –All 1000 emotions are rated by both raters. (ϰ = .715 and α = 67.7%)

Rater2 Total

Happy Sad Surprise Fear Disgust Anger Neutral

Rater1 Happy 106 0 1 1 1 0 8 117
90.6% 0% 0.9% 0.9% 0.9% 0% 6.7% 100%

Sad 0 32 0 1 3 8 16 60
0% 53.3% 0% 1.7% 5% 13.3% 26.7% 100%

Surprise 9 0 57 8 2 1 30 107
8.4% 0% 53.3% 7.5% 1.9% 0.9% 28% 100%

Fear 0 0 16 23 14 0 5 58
0% 0% 27.6% 39.7% 24.1% 0% 8.6% 100%

Disgust 0 3 2 2 58 8 12 85
0% 3.5% 2.4% 2.4% 68.2% 9.4% 14.1% 100%

Anger 1 6 1 1 6 69 10 94
1.1% 6.4% 1.1% 1.1% 6.4% 73.4% 10.5% 100%

Neutral 6 4 5 0 1 7 456 479
1.3% 0.8% 1% 0% 0.2% 1.5% 95.2% 100%

Total 122 45 82 36 85 93 537 1000

Table 2 Requested emotions and emotions recognised by the software – These numbers are taken from all 1000
emotions including ‘unable to mimic’ by the participants (ϰ = .716 and α = 71.5%)

Recognised Emotion by the Software Total

Happy Sad Surprise Fear Disgust Anger Neutral

Requested
Emotions

Happy 112 1 2 0 2 0 3 120
93.3% 0.8% 1.7% 0% 1.7% 0% 2.5% 100%

Sad 2 43 1 4 5 7 28 90
2.2% 47.8% 1.1% 4.4% 5.6% 7.8% 31.1% 100%

Surprise 0 0 69 2 5 1 3 80
0% 0% 86.3% 2.5% 6.3% 1.3% 3.8% 100%

Fear 1 5 8 35 8 9 14 80
1.1% 6.3% 10.0% 43.8% 10.0% 11.3% 17.5% 100%

Disgust 4 1 4 3 64 8 6 90
4.5% 1.0% 4.5% 3.3% 71.1% 8.9% 6.7% 100%

Anger 3 5 4 2 11 55 0 80
3.6% 6.3% 5.0% 2.5% 13.8% 68.8% 0% 100%

Neutral 5 17 10 6 4 5 413 460
1.1% 3.7% 2.2% 1.2% 0.9% 1.1% 89.8% 100%

Total 127 72 98 52 99 85 467 1000
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confused with happiness and sadness at all. The most difficult emotion is fear, which scores only
43.8% and is easily confused with neutral 17.5%, anger 11.3%, surprise 10.0%, disgust 10.0%,
sadness 6.3% and happiness 1.1%, respectively. This is in accordance with Murthy and Jadon
[54] and Zhang [83]. Moreover, Murthy and Jadon [54] states that sadness, disgust, and anger are
difficult to distinguish from each other and are therefore often wrongly classified.

Taking the raters’ analysis results as a reference Table 3 shows that the participants were
able to mimic requested emotions correctly in 69.4% of the occurrences. In 200 occurrences
(20%) there was disagreement between raters. In the remaining10.6% of the cases, the raters
agreed that participants were unable to mimic requested emotions (106 times). Participants are
best at mimicking neutral (87.4%) and worst at mimicking fear correctly (21.3%), which is in
accordance with Murthy and Jadon [54].

Table 4 shows the requested emotions of participants contrastedwith software recognition results
while excluding both the ‘unable to mimic’ records and the records on which the raters disagreed
with the dataset. We, therefore, re-calculated the results of each emotion separately and in total.

In 306 out of 1000 cases at least one of the raters indicated that the participants were
‘unable to mimic’ the requested emotions properly. We only summed occurrences when both
raters agreed that the displayed emotion was the same as the requested emotion’. The results
for all emotions move toward positive changes. Table 5 shows the comparison between the
accuracy of results of Tables 2 and 4.

The overall accuracy of 83.2% and the associated ϰ value of .837 are the final results that
fully rely on the comparison of requested emotions and recognised emotions.

4.4 Comparison of our software output with the extended Cohn-Kanade database

Table 6 shows the labelled emotions of the Cohn-Kanade subjects contrasted with the FURIA
classifier algorithm of our software. These numbers are taken from all 432 labelled emotions of
the subjects including the 432 rotated images of the subjects (in total = 864 emotions). Each
labelled emotion is separated into two rows that intersect with the recognised emotions through
the FURIA classifier algorithm. The FURIA classifier algorithm in our software has the
highest recognition rate for the surprise expression (95.2%) and the lowest recognition rate
for the fear expression (34%).

Based on our calculation using WEKA, the correctly classified instances of the Cohn-
Kanade database are 678 instances with the accuracy rate of 78.5% and the incorrectly
classified instances are 186 instances with the accuracy 21.5%. The Kappa value is therefore
ϰ = .737. Table 7 shows the comparison between the accuracy results of Tables 4 and 6 for
each independent emotion.

Table 3 Raters’ agreements and disagreements about 1000 mimicked emotions

Happy Sad Surprise Fear Disgust Anger Neutral Total

Raters agree:
Able to mimic

102 24 50 17 47 52 402 694
85% 26.7% 62.5% 21.3% 52.2% 65% 87.4% 69.4%

Raters disagree:
Able/unable to mimic

16 31 22 24 34 22 51 200
13.3% 34.4% 27.5% 30% 37.8% 27.5% 11.1% 20%

Raters agree: Unable
to mimic

2 35 8 39 9 6 7 106
1.7% 38.9% 10% 48.8% 10% 7.5% 1.5% 10.6%

100%
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The results show that the accuracy of our software overcomes the accuracy of the Cohn-
Kanade database. While, the precisions of sad, fear, and anger emotions show significant
increases, the precisions of happy, disgust and neutral emotions show the small improvements.
The surprise emotion shows less precision in our results. This might be the case that the total
sample size required for this study appeared to be minimum 885 occurrences with the actual
power of .95. However, for analysing the Cohn-Kanade database, we used only 432 frontal
faces as well as 432 rotated faces, thus this criterion was not met properly.

5 Discussion

This study presented an analysis for establishing the accuracy of facial emotion recognition
based on a fuzzy logic model. The result showed that ϰ = .837 and an average accuracy α =
83.2% based on the comparison of recognised emotions and requested emotions. The data
show that most intensive emotions (e.g., happiness, surprise) can be detected better than the
less intensive emotions except neutral and fear. This is in accordance with Murthy and Jadon

Table 4 Requested emotions and recognised emotions by the software – These numbers are taken by the raters
from 694 emotions of the participants that were able to mimic the requested emotions (ϰ = .837 and α = 83.2%)

Recognised Emotion by the Software Total

Happy Sad Surprise Fear Disgust Anger Neutral

Requested
Emotions

Happy 99 1 1 0 1 0 0 102
97.0% 1.0% 1.0% 0.0% 1.0% 0.0% 0.0% 100%

Sad 1 18 0 2 0 0 3 24
4.2% 75.0% 0.0% 8.3% 0.0% 0.0% 12.5% 100%

Surprise 0 0 47 1 1 1 0 50
0.0% 0.0% 94.0% 2.0% 2.0% 2.0% 0.0% 100%

Fear 0 0 2 12 0 0 3 17
0.0% 0.0% 11.8% 70.6% 0.0% 0.0% 17.6% 100%

Disgust 0 0 0 0 39 6 2 47
0.0% 0.0% 0.0% 0.0% 83.0% 12.8% 4.2% 100%

Anger 3 3 3 1 5 37 0 52
5.8% 5.8% 5.8% 1.9% 9.5% 71.2% 0% 100%

Neutral 4 8 7 5 4 5 369 402
1.0% 2.0% 1.8% 1.2% 1.0% 1.2% 91.8% 100%

Total 107 30 60 21 50 49 377 694

Table 5 The comparison between the accuracy results of Tables 2 and 4. Each emotion is independently
compared

All 1000 emotions Only 694 able to mimic emotions

Happy 93.3% 97.1%
Sad 47.8% 75.0%
Surprise 83.6% 94.0%
Fear 43.8% 70.6%
Disgust 71.1% 83.0%
Anger 68.8% 71.2%
Neutral 89.8% 91.8%
Average accuracy α 71.5% 83.2%
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[54] and Zhang [83], who found that the most difficult emotion to mimic accurately is fear.
Moreover, this result expresses that fear is differently interpreted from other basic facial
emotions. Furthermore, our data analysis confirms Murthy’s [54] finding that sadness, disgust,
and anger are difficult to distinguish from each other and are therefore often wrongly
classified. Anger and disgust share many similar facial actions [20] and that is probably the
reason why they are often confused. In 137 cases of disgust from joint Tables 2 and 4, 14 cases
are detected as anger. In 132 cases of anger from Tables 2 and 4, 16 cases are detected as
disgust. Hence confusion of anger and disgust is well over 8.9%.

Some potential limitations of the study should be pointed out. First, we have considered
only six basic emotions and the neutral emotion in this study, although a larger diversity
might be opportune. Nevertheless, the fuzzy logic approach could be easily extended to
more emotions provided that an annotated reference database is available. Second, to
validate the fuzzy-logic approach we used the recorded data of non-actors. A previous
study by Krahmer and Swerts has shown that actors, although they evidently have better
acting skills than laymen, will produce more realistic (i.e., authentic, spontaneous)

Table 6 Recognition rate of the FURIA classifier algorithm our software over the labelled emotions of the Cohn-
Kanade database – These numbers are taken from all 432 labelled emotions of the subjects including the 432
rotated images of the subjects

Recognised Emotion by the Software Total

Happy Sad Surprise Fear Disgust Anger Neutral

Requested
Emotions

Happy 131 0 0 0 3 0 4 138
94.9% 0.0% 0.0% 0.0% 2.2% % 2.9% 100%

Sad 0 20 0 0 0 7 27 54
0.0% 37.0% 0.0% 0.0% 0.0% 13.0% 50.0% 100%

Surprise 1 0 160 3 1 0 3 168
0.6% 0.0% 95.2% 1.8% 0.6% 0.0% 1.8% 100%

Fear 3 2 3 17 3 0 22 50
6% 4% 6% 34.0% 6.0% 0.0% 44.0% 100%

Disgust 7 0 0 0 90 7 14 118
6.0% 0.0% 0.0% 0.0% 76.2% 6.0% 11.8% 100%

Anger 3 10 0 1 13 52 11 90
3.3% 11.1% 0.0% 1.1% 14.4% 57.9% 12.2% 100%

Neutral 6 8 1 2 9 12 208 246
2.4% 3.2% 0.4% 0.8% 3.7% 4.9% 84.6% 100%

Total 151 40 164 23 119 78 289 864

Table 7 The comparison between the recognition results of Tables 4 and 6. Each emotion is independently
compared

Results of Table 6: Cohn-Kanade database
based on the FURIA classifier

Results of Table 4: Our database
based on the FURIA classifier

Happy 94.9% 97.1%
Sad 37.0% 75.0%
Surprise 95.2% 94.0%
Fear 34.0% 70.6%
Disgust 76.2% 83.0%
Anger 57.9% 71.2%
Neutral 84.6% 91.8%
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expressions [41]. Third, given our sample of medium-aged participants, we did not take
into account participants’ age as a disturbing factor. Existing research shows that young-
sters and older adults are not equally good at mimicking different basic emotions, e.g.,
older adults are less good at mimicking sadness and happiness than youngsters, but older
adults can mimic disgust in a better way than youngsters do [30]. Likewise, potential
gender differences have not been taken into account.

6 Conclusion

The presented approach to fuzzy-logic based emotion recognition offers high quality, reliable
recognition, and categorisation of emotions. The approach fulfils the requirements of being 1)
an unobtrusive approach, with 2) an objective method that can be verified by researchers, 3)
which requires inexpensive and ubiquitous equipment (webcam), and 4) which outperforms
existing approaches. Compared to our previous study with the accuracy of 72% and less
reliability [7], this study achieve a 83.2% average accuracy (α) level, which is comparable
with human performance [15, 55]. Moreover, multiple faces in a picture can detect at the same
time. Furthermore, being compliant with the RAGE software architecture, the emotion
recognition component created in this study can be easily ported to a variety of game engines
and e-learning environments.

Emotion recognition technology can now be easily added to educational games or e-
learning environments to enhance overall support for the learning. It opens up new possibilities
to including the learners’ emotional states in the user profiles needed for adaptive and
personalised feedback, and to the dedicated training of communication skills and other soft
skills are heavily rely on emotion [28]. This technology can also be easily used in other
domains, such as the healthcare. For instance, this technology can be used in social adaptation
skills for children with autism spectrum disorder [33].
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Appendix 1

FURIA Fuzzy Rules (37 Rules):

& Rule 1: (Cosine30 in [159.608, 160.424, inf, inf]) and (Cosine35 in [30.0655, 30.2536,
inf, inf]) = > Emotions = Happy (CF = 0.97)

& Rule 2: (Cosine31 in [−inf, −inf, 9.85016, 9.96286]) and (Cosine51 in [35.5078, 35.5856,
inf, inf]) and (Cosine10 in [22.9748, 23.0757, inf, inf]) and (Cosine0 in [−inf, −inf,
24.8358, 24.9599]) = > Emotions = Happy (CF = 0.98)

& Rule 3: (Cosine32 in [−inf, −inf, 13.8022, 14.6793]) and (Cosine34 in [25.1647, 25.4542,
inf, inf]) and (Cosine50 in [3.7724, 3.79234, inf, inf]) and (Cosine48 in [64.551, 66.8476,
inf, inf]) = > Emotions = Happy (CF = 0.9)

18958 Multimedia Tools and Applications (2019) 78:18943–18966

http://www.rageproject.eu


& Rule 4: (Cosine31 in [−inf, −inf, 12.4074, 16.2636]) and (Cosine35 in [25.6426, 27.0878,
inf, inf]) and (Cosine37 in [21.4168, 21.5797, inf, inf]) and (Cosine0 in [−inf, −inf,
21.1748, 21.9187]) = > Emotions = Happy (CF = 0.95)

& Rule 5: (Cosine32 in [−inf, −inf, 5.15255, 5.16574]) and (Cosine32 in [4.97626, 5.05265,
inf, inf]) = > Emotions = Happy (CF = 0.66)

& Rule 6: (Cosine34 in [−inf, −inf, 15.1591, 15.3646]) and (Cosine42 in [−inf, −inf,
73.6283, 74.5163]) and (Cosine32 in [17.9646, 17.9917, inf, inf]) and (Cosine13 in
[68.61, 70.3929, inf, inf]) and (Cosine37 in [−inf, −inf, 22.5483, 22.8643]) = > Emotions =
Sad (CF = 0.94)

& Rule 7: (Cosine33 in [142.341, 142.606, inf, inf]) and (Cosine44 in [51.9081, 52.9607,
inf, inf]) and (Cosine50 in [−inf, −inf, 3.15842, 3.18719]) and (Cosine31 in [14.1431,
14.4425, inf, inf]) = > Emotions = Sad (CF = 0.82)

& Rule 8: (Cosine46 in [−inf, −inf, 84.9609, 85.074]) and (Cosine51 in [36.248, 36.6846,
inf, inf]) = > Emotions = Sad (CF = 0.81)

& Rule 9: (Cosine42 in [−inf, −inf, 54.362, 54.4623]) and (Cosine3 in [49.4672, 53.9726,
inf, inf]) and (Cosine18 in [48.7314, 48.7806, inf, inf]) = > Emotions = Sad (CF = 0.84)

& Rule 10: (Cosine1 in [−inf, −inf, 6.82602, 7.03498]) and (Cosine15 in [14.5889, 15.0512,
inf, inf]) = > Emotions = Sad (CF = 0.53)

& Rule 11: (Cosine30 in [−inf, −inf, 126.304, 149.554]) and (Cosine34 in [33.9611,
34.0477, inf, inf]) = > Emotions = Surprise (CF = 0.99)

& Rule 12: (Cosine8 in [40.2461, 40.3331, inf, inf]) and (Cosine12 in [−inf, −inf, 45.1865,
45.2721]) = > Emotions = Surprise (CF = 0.98)

& Rule 13: (Cosine17 in [17.0409, 17.0477, inf, inf]) and (Cosine17 in [−inf, −inf, 17.1027,
17.1054]) = > Emotions = Surprise (CF = 0.68)

& Rule 14: (Cosine48 in [−inf, −inf, 42.3974, 43.2472]) = > Emotions = Surprise (CF = 0.6)
& Rule 15: (Cosine26 in [38.6598, 40.2364, inf, inf]) and (Cosine50 in [3.61388, 3.62035,

inf, inf]) and (Cosine19 in [86.8202, 87.1376, inf, inf]) and (Cosine32 in [−inf, −inf,
22.3228, 22.4199]) and (Cosine44 in [48.7314, 48.8141, inf, inf]) = > Emotions = Fear
(CF = 0.9)

& Rule 16: (Cosine49 in [−inf, −inf, 95.8395, 96.2791]) and (Cosine49 in [93.3419,
94.0108, inf, inf]) and (Cosine8 in [35.0195, 35.6748, inf, inf]) and (Cosine30 in
[112.548, 127.911, inf, inf]) = > Emotions = Fear (CF = 0.84)

& Rule 17: (Cosine33 in [113.647, 120.77, inf, inf]) and (Cosine35 in [19.8265, 20.2393,
inf, inf]) and (Cosine22 in [41.6335, 41.8665, inf, inf]) and (Cosine51 in [34.8844,
35.0913, inf, inf]) and (Cosine12 in [−inf, −inf, 56.658, 56.7193]) = > Emotions = Fear
(CF = 0.87)

& Rule 18: (Cosine26 in [−inf, −inf, 26.9489, 27.5973]) and (Cosine8 in [−inf, −inf,
25.3267, 26.1046]) and (Cosine21 in [59.7436, 60.0864, inf, inf]) = > Emotions = Disgust
(CF = 0.96)

& Rule 19: (Cosine26 in [−inf, −inf, 35.8377, 36.2538]) and (Cosine30 in [−inf, −inf,
151.318, 151.76]) and (Cosine35 in [18.6981, 18.7149, inf, inf]) and (Cosine8 in [−inf,
−inf, 25.9913, 26.0754]) and (Cosine50 in [3.1012, 3.21448, inf, inf]) and (Cosine51 in
[−inf, −inf, 40.4826, 40.6054]) = > Emotions = Disgust (CF = 0.96)

& Rule 20: (Cosine26 in [−inf, −inf, 35.4509, 35.8195]) and (Cosine30 in [−inf, −inf,
160.168, 160.675]) and (Cosine42 in [91.4652, 91.8476, inf, inf]) and (Cosine9 in
[28.8713, 31.4661, inf, inf]) and (Cosine16 in [−inf, −inf, 151.557, 151.794]) = > Emo-
tions = Disgust (CF = 0.94)
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& Rule 21: (Cosine28 in [−inf, −inf, 38.1572, 38.3107]) and (Cosine31 in [7.43669,
10.1433, inf, inf]) and (Cosine26 in [−inf, −inf, 30.9638, 31.4521]) and (Cosine4 in
[−inf, −inf, 46.4321, 46.5831]) and (Cosine45 in [74.4759, 75.0686, inf, inf]) = > Emo-
tions = Disgust (CF = 0.94)

& Rule 22: (Cosine28 in [−inf, −inf, 38.1572, 38.3782]) and (Cosine32 in [8.70181,
8.71473, inf, inf]) and (Cosine9 in [35.9909, 36.1861, inf, inf]) and (Cosine8 in [−inf,
−inf, 27.817, 27.929]) and (Cosine14 in [−inf, −inf, 46.8177, 47.5595]) and (Cosine8 in
[17.2892, 18.9069, inf, inf]) = > Emotions = Disgust (CF = 0.93)

& Rule 23: (Cosine28 in [−inf, −inf, 38.1572, 39.6233]) and (Cosine32 in [15.3773,
15.6442, inf, inf]) and (Cosine23 in [−inf, −inf, 90, 92.4002]) and (Cosine6 in [34.6599,
35.2154, inf, inf]) and (Cosine2 in [144.482, 144.492, inf, inf]) = > Emotions = Disgust
(CF = 0.9)

& Rule 24: (Cosine10 in [−inf, −inf, 26.4547, 27.2133]) and (Cosine17 in [13.8931,
14.1754, inf, inf]) and (Cosine11 in [−inf, −inf, 117.723, 118.822]) and (Cosine7 in
[112.807, 113.395, inf, inf]) and (Cosine0 in [−inf, −inf, 24.2531, 28.1416]) = > Emo-
tions = Disgust (CF = 0.86)

& Rule 25: (Cosine7 in [115.258, 117.446, inf, inf]) and (Cosine34 in [−inf, −inf, 17.2653,
19.2307]) and (Cosine30 in [152.184, 152.257, inf, inf]) and (Cosine36 in [141.526,
141.77, inf, inf]) = > Emotions = Anger (CF = 0.93)

& Rule 26: (Cosine11 in [122.859, 124.442, inf, inf]) and (Cosine22 in [33.0558, 33.6901,
inf, inf]) and (Cosine8 in [−inf, −inf, 21.139, 21.5363]) = > Emotions = Anger (CF = 0.9)

& Rule 27: (Cosine11 in [114.76, 115.918, inf, inf]) and (Cosine34 in [−inf, −inf, 17.0449,
17.049]) and (Cosine39 in [−inf, −inf, 137.883, 138.125]) and (Cosine19 in [86.0353,
86.1859, inf, inf]) = > Emotions = Anger (CF = 0.82)

& Rule 28: (Cosine11 in [123.048, 124.509, inf, inf]) and (Cosine51 in [−inf, −inf, 33.6707,
33.6995]) and (Cosine18 in [52.6819, 53.231, inf, inf]) = > Emotions = Anger (CF = 0.83)

& Rule 29: (Cosine34 in [−inf, −inf, 22.8636, 23.1986]) and (Cosine31 in [−inf, −inf,
10.1964, 10.3628]) and (Cosine46 in [−inf, −inf, 107.21, 107.447]) and (Cosine47 in
[−inf, −inf, 3.29176, 3.4244]) = > Emotions = Anger (CF = 0.82)

& Rule 30: (Cosine5 in [−inf, −inf, 68.4986, 68.8774]) and (Cosine35 in [−inf, −inf,
18.6981, 18.7149]) and (Cosine13 in [−inf, −inf, 66.8664, 67.7345]) and (Cosine51 in
[−inf, −inf, 39.3543, 39.4115]) = > Emotions = Anger (CF = 0.92)

& Rule 31: (Cosine34 in [−inf, −inf, 26.5651, 26.7055]) and (Cosine20 in [39.2894,
39.6233, inf, inf]) and (Cosine45 in [−inf, −inf, 78.9618, 78.9745]) and (Cosine38 in
[19.9831, 20.0674, inf, inf]) and (Cosine8 in [−inf, −inf, 35.4327, 36.92]) and (Cosine30
in [−inf, −inf, 156.633, 157.079]) and (Cosine44 in [38.5527, 38.6598, inf, inf]) = >
Emotions = Neutral (CF = 0.98)

& Rule 32: (Cosine35 in [−inf, −inf, 27.2363, 27.3464]) and (Cosine28 in [38.1572,
38.6598, inf, inf]) and (Cosine6 in [38.9806, 39.1219, inf, inf]) and (Cosine50 in [−inf,
−inf, 3.61388, 3.64164]) and (Cosine45 in [−inf, −inf, 79.5199, 79.6952]) = > Emotions =
Neutral (CF = 0.95)

& Rule 33: (Cosine34 in [−inf, −inf, 28.1313, 28.9551]) and (Cosine28 in [38.1572,
38.4537, inf, inf]) and (Cosine9 in [39.7376, 39.8419, inf, inf]) and (Cosine19 in [−inf,
−inf, 86.6335, 87.0364]) and (Cosine50 in [−inf, −inf, 3.61207, 3.62575]) = > Emotions =
Neutral (CF = 0.93)

& Rule 34: (Cosine34 in [−inf, −inf, 26.8913, 26.9486]) and (Cosine20 in [33.6901,
35.8195, inf, inf]) and (Cosine12 in [−inf, −inf, 58.3317, 58.6666]) and (Cosine22 in
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[−inf, −inf, 38.7933, 39.0939]) and (Cosine33 in [−inf, −inf, 152.969, 152.971]) and
(Cosine43 in [50.7021, 50.8786, inf, inf]) = > Emotions = Neutral (CF = 0.94)

& Rule 35: (Cosine33 in [88.1516, 121.909, inf, inf]) and (Cosine28 in [38.1572, 38.6238,
inf, inf]) and (Cosine51 in [−inf, −inf, 35.422, 36.0181]) and (Cosine43 in [−inf, −inf,
51.481, 51.6839]) and (Cosine32 in [13.4486, 13.6831, inf, inf]) and (Cosine26 in [−inf,
−inf, 43.2643, 43.3844]) and (Cosine36 in [−inf, −inf, 146.691, 146.723]) = > Emotions =
Neutral (CF = 0.97)

& Rule 36: (Cosine35 in [−inf, −inf, 29.0332, 32.685]) and (Cosine8 in [26.5308, 26.5651,
inf, inf]) and (Cosine29 in [−inf, −inf, 85.6013, 85.9144]) and (Cosine44 in [−inf, −inf,
51.953, 52.0023]) and (Cosine5 in [−inf, −inf, 75.7986, 76.0875]) and (Cosine18 in [−inf,
−inf, 61.0736, 64.9831]) = > Emotions = Neutral (CF = 0.95)

& Rule 37: (Cosine33 in [118.764, 120.426, inf, inf]) and (Cosine27 in [−inf, −inf, 57.0948,
64.7327]) and (Cosine49 in [104.517, 104.534, inf, inf]) and (Cosine51 in [−inf, −inf,
33.918, 34.2595]) and (Cosine5 in [73.3444, 73.7261, inf, inf]) and (Cosine33 in [−inf,
−inf, 136.4, 149.673]) = > Emotions = Neutral (CF = 0.96)
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